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We investigate invasions from a biological reservoir to an initially empty, heterogeneous habitat in the
presence of advection. The habitat consists of a periodic alternation of favorable and unfavorable
patches. In the latter the population dies at fixed rate. In the former it grows either with the logistic or
with an Allee effect type dynamics, where the population has to overcome a threshold to grow. We
study the conditions for successful invasions and the speed of the invasion process, which is
numerically and analytically investigated in several limits. Generically advection enhances the down-
stream invasion speed but decreases the population size of the invading species, and can even inhibit
the invasion process. Remarkably, however, the rate of population increase, which quantifies the
invasion efficiency, is maximized by an optimal advection velocity. In models with Allee effect,
differently from the logistic case, above a critical unfavorable patch size the population localizes in a
favorable patch, being unable to invade the habitat. However, we show that advection, when intense

enough, may activate the invasion process.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Invasions of alien species are widespread phenomena, in princi-
ple affecting every ecosystem, usually with dramatic consequences
on the native community, constituting a major threat to biodiversity
(Vitousek et al., 1997; Mooney and Hobbs, 2000; Pimentel et al.,
2000). At the scale of interest for management purposes, i.e. the
geographic scale, invasive species move across a heterogeneous
landscape characterized by favorable and unfavorable areas. The
presence of abiotic heterogeneity, in fact, characterizes most of
natural habitats and plays a key role in invasion processes, influen-
cing their rate of spread and outcome (Shigesada and Kawasaki,
1997; Hastings et al., 2005; Melbourne et al., 2007).

Alongside with the empirical interest for the problem, several
modeling efforts have been dedicated to the understanding and
prediction of the spatial spread of invading organisms in hetero-
geneous environments. Within the framework of reaction-diffu-
sion models, building on the pioneering theoretical works of
Skellam (1951) and Kierstead and Slobodkin (1953) on the
“critical patch size” problem, Shigesada et al. (1986) gave a
seminal contribution considering the invasion (propagation) of a
population through a periodic heterogeneous environment (see
also Weinberger, 2002; Kinezaki et al., 2003). The problem was
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extended including advective transport to study persistence and
propagation of passively dispersing populations in oceans (Mann
and Lazier, 1991; Abraham, 1998) or rivers (Speirs and Gurney,
2001; Pachepsky et al., 2005; Lutscher et al., 2006). The impor-
tance of the interplay between heterogeneity and advection has
been recently reviewed by Ryabov and Blasius (2008). Moreover,
the role of both advection and landscape spatial structure is
clearly relevant also to the dispersal of plants (Hastings et al.,
2005), whose seeds are transported by winds.

In this paper, we focus on the interplay between abiotic hetero-
geneity and advection in invasions. We describe the dynamics in
terms of an advection-reaction—diffusion model, which allows for
mathematical tractability and quantitative predictions, e.g., on the
spreading rates.

We consider an infinite system where a population stably
saturates the carrying capacity on one side of the system and
possibly invades the remaining part of the environment, which is
assumed to be heterogeneous. Our setting is quite general and
widely applicable. In particular, it is relevant to situations in
which one has a practically infinite biological reservoir of a
species invading an empty territory characterized by abiotic
heterogeneity. For instance, the above setting may be relevant
to situations in which invasions can suddenly become possible for
the removal of a climatic barrier due to climate changes (Mooney
and Hobbs, 2000). Another relevant case is when a species stably
populating a lake invades an effluent characterized by a certain
degree of heterogeneity and stream velocity. This is one of the key
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early stage processes related to the spatial control of invasions in
lakes’ networks (Havel et al., 2002). Other examples concern the
spreading of wind-pollinated plants in a heterogeneous environ-
ment (Davis et al., 2004) or spores carried by the wind (Kot et al.,
1996).

More specifically, the habitat consists of a periodic alternation
of unfavorable and favorable patches, as in Shigesada et al. (1986).
The population dies at a fixed rate in unfavorable regions, and
grows in favorable ones according to either a logistic or an Allee
effect dynamics. We are interested in determining the conditions
for invasions to be possible and in understanding how invasion
speed and efficiency depend on the mechanisms at play.

With the logistic dynamics, in the absence of advection, this
problem was pioneered by Shigesada et al. (1986), while Lutscher
et al. (2006) considered both advection and heterogeneity in
reference to the “drift paradox” problem (Speirs and Gurney,
2001). Going beyond these works, we find asymptotic expressions
for both the invasion speed and the rate of increase of the
population size. The latter quantity essentially estimates the rate
at which the number of invading individuals grows and, thus,
provides a suitable measure of the efficiency of the spreading
process. Indeed, especially in invasive species control, it is
important to quantify the potentiality of growth of an alien
population, and not only the speed at which it colonizes the
territory. We anticipate that, remarkably, larger invasion speeds
do not necessarily imply more efficient invasions.

The logistic case (decreasing per capita growth rate) is then
contrasted with the case of positive density dependence corre-
sponding to a demographic Allee effect (Allee, 1938; Dennis,
1989), which accounts for a reduced reproductive power at low
densities. The importance of Allee effects for the invasion and
control of non-native species was emphasized by Taylor and
Hastings (2005) and Tobin et al. (2011). It is interesting to
mention that even in homogeneous habitats the presence of the
Allee effect can decrease the invasion speed or even halt the
population spreading if the initially occupied area is too small
(Lewis and Kareiva, 1993) (see also Vercken et al., 2011 for recent
field observations). We find that the interplay between hetero-
geneity and advection becomes very subtle in the presence of the
Allee effect. In fact it may happen that a persisting population,
unable to invade new territory, becomes able to spread in the
presence of strong advection. This effect should be taken as a
cautionary note from the standpoint of controlling invasive
species, telling us that advective transport should be considered.
For instance, after strong weather events, or in regions character-
ized by prevailing winds, neglecting the effects of advection could
lead to the erroneous prediction of a population unable to invade,
whereas it actually propagates over the territory.

The material is organized as follows. In Section 2 we present
the model, and in Section 3 we qualitatively discuss its phenom-
enology. Sections 4 and 5 present and discuss the main results on
invasions with the logistic and the Allee effect model, respec-
tively. Finally, in Section 6 we summarize the results.

2. Model

The evolution of the population, 0(x,t), is governed by the
advection-reaction-diffusion equation:

810+ v0x0 = D20 +£(0,%). 1)

The diffusion coefficient D and the advection velocity v are
assumed to be constant. Heterogeneity is introduced in the growth
term, f(60,x), which depends on the position x. The habitat consists
of a periodic alternation of unfavorable and favorable patches of
sizes £, and £y, respectively. In the elementary cell [0 : £] (where

L =ty+{; denotes the spatial period), we take

0<x<{ty,

84(0),
ly<x<L. @

f0x)= {gf(g)'

In the unfavorable regions the population is assumed to die at a
constant rate r,, so that g,(0)=—-r,0 (r, >0). In the favorable
regions we consider two dynamics. The first is the classical logistic
model (with carrying capacity normalized to one):

gr(0) =170(1-0), 3)

1rbeing the intrinsic growth rate. Eq. (1) with the logistic term but
without advection was first studied by Shigesada et al. (1986).
Recently, Lutscher et al. (2006) included advection focusing on the
“drift paradox” problem.

Second, accounting for a positive correlation between popula-
tion density and per capita growth rate at small densities—the
Allee effect (Allee, 1938; Dennis, 1989)—we consider the thresh-
old model:

g7(0) =17 max{(0—0c)(1-0),0}, “

prescribing that the population grows only when 0 > 0. (other-
wise it stays constant). Notice that (4) recovers (3) for 0.=0.
We remark that the model (4) represents an intermediate case
between weak and strong Allee effect (Courchamp et al., 2008, see
also Section 5 for further discussions). To the best of our knowl-
edge, models with Allee effects have been mostly investigated in
homogeneous habitats (Petrovskii and Li, 2003). In heterogeneous
habitats we are aware of only a few studies with integro-
difference models incorporating different dispersal kernels (see,
e.g., the recent work by Dewhirst and Lutscher, 2009; Pachepsky
and Levine, 2011).

We now specify the settings in which Eq. (1) is studied. We
consider model (1) with boundary condition 0(0,t) = 1, mimicking
the case in which on the left of the origin (x < 0) the population
constantly saturates the carrying capacity, while the population is
initially absent in the x > 0 region, i.e. 6(x,0)=0 for x > 0. With
this choice for the boundary conditions the invasion process must
be considered from left to right (i.e. from the biological reservoir
at x <0 to the positive real axis). In this case depending on the
sign of the advection velocity we can consider (downstream)
invasions with the flow (i.e when v > 0) or (upstream) invasions
against the flow (i.e. when v < 0).

It is useful to formulate the model in non-dimensional vari-
ables. To this aim we exploit known results about the logistic
growth model without advection, namely the standard FKPP
equation (Fisher, 1937; Kolmogorov et al., 1937). The FKPP
equation develops traveling fronts characterized by the propaga-
tion speed vo = 2,/Dry and width &, = /D/ry. It is then natural to
measure lengths in units of &, time in units of the inverse growth
rate in the favorable patches 1/ry, and the advection velocity in
units of vo. We thus define the non-dimensional variables
X =x/&, t'=tr;, u=v/vo. Dropping the primes, Eq. (1) made
non-dimensional reads

304 2udx0 = 20 +f(0,%). (5)

The factor 2 in the advection term results from our choice to fix
u=1 as the non-dimensional propagation speed in the homo-
geneous FKPP system. We can now introduce ¢ =r,/ry which is
the death over growth rate ratio, and [, = ¢s,, /£, which are the
non-dimensional sizes of the patches (L=L/{y=1,+I). In this
way, with reference to Eq. (2) we have g,(0) = —c0 and

g(0)=0(1-0) (6)
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