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a b s t r a c t

Recent work has discussed the importance of multiplicative closure for the Markov models used in

phylogenetics. For continuous-time Markov chains, a sufficient condition for multiplicative closure of a

model class is ensured by demanding that the set of rate-matrices belonging to the model class form a

Lie algebra. It is the case that some well-known Markov models do form Lie algebras and we refer to

such models as ‘‘Lie Markov models’’. However it is also the case that some other well-known Markov

models unequivocally do not form Lie algebras (GTR being the most conspicuous example).

In this paper, we will discuss how to generate Lie Markov models by demanding that the models

have certain symmetries under nucleotide permutations. We show that the Lie Markov models include,

and hence provide a unifying concept for, ‘‘group-based’’ and ‘‘equivariant’’ models. For each of two and

four character states, the full list of Lie Markov models with maximal symmetry is presented and shown

to include interesting examples that are neither group-based nor equivariant. We also argue that our

scheme is pleasing in the context of applied phylogenetics, as, for a given symmetry of nucleotide

substitution, it provides a natural hierarchy of models with increasing number of parameters. We also

note that our methods are applicable to any application of continuous-time Markov chains beyond the

initial motivations we take from phylogenetics.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Continuous-time Markov chains are fundamental to the imple-
mentation of, and philosophy behind, many phylogenetic meth-
ods. Likelihood and Bayesian phylogenetic methods usually
proceed by attempting to fit a single ‘‘rate-matrix’’ globally across
a proposed evolutionary tree history (see, for example, Chapters
2 and 3 of Gascuel, 2005). These rate-matrices are chosen from
some restricted class or ‘‘model’’ that is defined by a certain set
of constraints on the elements of a generic rate-matrix. These
constraints define a set of free parameters that usually correspond
to unknown evolutionary quantities such as base composition,
mutation rates and the timing of speciation events (these last
two are often by necessity confounded together simply as ‘‘edge
lengths’’). Even in phylogenetic distance methods, it is usually the
case that the theoretical justification of a given distance estimator
is taken from a continuous-time Markov model (for example
the general Markov model for the ‘‘log-det’’ (Steel, 1994) distance
or the HKY distance taken from its corresponding model,
Felsenstein, 2004).

A homogeneous Markov chain satisfies the condition that the
probability transition rates are constant in time. In the phyloge-
netic context this means that the rates are unchanged throughout
evolutionary history. Of course, this is used as an approximation to
biological reality where it is well documented that transition rates
are not only time-dependent (Ho et al., 2005, 2007), but also vary
across the different lineages of the evolutionary tree (Lockhart
et al., 1998). Methods to cope with these issues have been
explored by various authors: Tuffley and Steel (1997) proposed
the ‘‘covarion’’ model where a switching process allows sites to
alternate between ‘‘on’’ and ‘‘off’’ states. Drummond et al. (2006)
proposed a method that introduces an overall scaling factor for the
transition rates that is sampled randomly (at branching events, for
example), and the methods presented in Whelan (2008) are more
general still with a switching process that allows for alteration of
individual rates. The simulation package discussed in Fletcher and
Yang (2009) provides further evidence that these issues are of
ongoing importance to phylogenetic analysis.

Our philosophy is to remain agnostic as to whether evolutionary
rates have changed in the past or, indeed, whether it is possible to
statistically detect this change via analysis of present day molecular
data. We follow an approach that allows for the biological possibility
that there is likely to have been a smooth (or even abrupt) change of
each individual transition rate independently occurring across the
evolutionary tree (and not necessarily restricted to branching events).
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This discussion leads naturally to confronting the possibility (at least
theoretically) that the phylogenetic process is not homogeneous and
is more accurately modeled as an inhomogeneous continuous-time
Markov chain; where the rate-matrix is far from constant and
ultimately is allowed to vary, smoothly or otherwise, as a function
of edge length parameters of the evolutionary tree.

Of course, given the bias/variance tradeoff of statistical analy-
sis (Burnham and Anderson, 2002), modeling phylogenetic evolu-
tion as a inhomogeneous process is statistically implausible in
practice (we would effectively be replacing a small number of
parameters by an infinite continuum). Indeed this is where the
methods discussed in Drummond et al. (2006), where rates may
change but only at branching events, can be seen as somewhat of
an intelligent compromise between a (statistically tractable)
homogeneous model and a (biologically realistic) inhomogeneous
model. Another approach would be to abandon the continuous-
time hypothesis and work with discrete Markov chains (or
equivalently ‘‘algebraic’’ models, Pachter and Sturmfels, 2005).
However this approach introduces many free parameters and
suffers from a lack of interpretation, as it is unclear what the free
algebraic parameters mean in biological terms (such as diver-
gence times and molecular rates), except with reference to the
corresponding continuous-time approach.

An available resolution of these issues is to observe that it is
possible to continue to model phylogenetic processes as being
homogeneous, but interpret the transition rates that are fitted on
each of the tree as a kind of ‘‘average’’ of the true inhomogeneous
process for that edge. It is this perspective that we take in this
work and it leads directly to the concept of multiplicative closure

for continuous-time Markov chains. It will be shown that models
that are multiplicatively closed have the property that, even in
their inhomogeneous formulation, it is possible to interpret their
average behavior as a homogeneous process. It is then the
purpose of this paper to discuss sufficient conditions for multi-
plicative closure of continuous-time Markov chains. In order to
generate particular examples of closed models, we exploit sym-
metry properties of DNA substitution rates to present a scheme
that creates a hierarchy of closed Markov models based on the
number of free parameters available. We also note that our
results are applicable to any application of continuous-time
Markov chains, and as such are of general relevance beyond the
phylogenetic applications that we discuss to motivate this study.

In Section 2 we give basic definitions of multiplicative closure
and Lie Markov models. To achieve this we review the required
Lie theory, and we discuss the Lie algebra of the general Markov
model. As an example to motivate the general procedure, in
Section 3 we specialize to the case of binary Markov chains and
give a complete description of Lie Markov models in this case. In
Section 4 we discuss the symmetry properties of DNA models
under nucleotide permutations, and show that these symmetries
are statistically relevant to likelihood calculations. We then
explain how such symmetry can be used to assist in the search
for Lie Markov models. Here we also prove that ‘‘equivariant’’ (see
Draisma and Kuttler, 2008; Casanellas and Fernández-Sánchez,
2010) and ‘‘group-based’’ (see Semple and Steel, 2003) models are
examples of Lie Markov models. In Section 5 we give a general
scheme for generating a full list of Lie Markov models with a
given symmetry property. In Section 6 we explicitly give four
state Lie Markov models with maximal symmetry. Finally, Section 7
discusses implications and possibilities for future work.

2. Lie algebras and closure of Markov models

For algebraic simplicity we work over the complex field C, and
refer to a matrix as ‘‘Markov’’ if it has unit column sums. Later we

will discuss how our discussion specializes to the stochastic case
where the entries must be real and lie in the range [0,1]. Rather
than work directly with the general Markov model, we will also
consider only Markov matrices that have non-zero determinant.
Although this need not be the case for a general Markov matrix, it
is not too stringent a condition as (i) the set of Markov matrices
with zero determinant is of measure zero in the set of Markov
matrices (this is because they are defined by the vanishing of a
single polynomial function and hence lie in an ambient space of
dimension one less than the set of generic Markov matrices),
(ii) Markov matrices that arise from a continuous-time formula-
tion have non-zero determinant (as we will see shortly). In any
case, in the conclusions we will argue that understanding Markov
matrices with zero determinant becomes easier once we under-
stand how the rest can be categorized.

Let the general Markov model MGMM be the set of n�n matrices
with column sum 1

MGMM :¼ fMAMnðCÞ : h
T M¼ hT

g,

where h is the column n-vector with all its entries equal to 1,
i.e. hT

¼ ð1;1, . . . ,1Þ. Specializing further, consider the subset of
matrices in MGMM with non-zero determinant

GL1ðn,CÞ :¼ fMAMnðCÞ : h
T M¼ hT ,detðMÞa0g:

In turn, this set of matrices includes a subset of matrices that arise
by taking the exponential of a rate-matrix; that is, the exponential
of a matrix in

LGMM :¼ fQ AMnðCÞ : h
T Q ¼ 0T

g: ð1Þ

We will refer to eLGMM :¼ feQ : Q ALGMMg as ‘‘the general rate-
matrix model’’ and below we will discuss matrix exponentials in
more detail (particularly their importance to Lie theory).

As the inverse of a Markov matrix (if it exists) is also a Markov
matrix it is clear that GL1ðn,CÞ is actually a subgroup of the general
linear group GLðn,CÞ, and it follows that GL1ðn,CÞ and eLGMM are
actually Lie groups (see Stillwell, 2008, for the relevant technical
definitions). In fact we have the isomorphism GL1ðn,CÞffiAðn�1,CÞ
where Aðn�1,CÞ is the (complex) affine group (see for example,
Baker, 2003). This observation allows the general methods of Lie
theory to be applied to understanding continuous-time Markov
models; see Johnson (1985) and Mourad (2004) for general results
and discussion, and Sumner et al. (2008) and Sumner and Jarvis
(2009) for applications to phylogenetics.

Summarizing, we have the following set inclusions:

eLGMM � GL1ðn,CÞ �MGMM ,

and Lie group hierarchy

eLGMM oGL1ðn,CÞoGLðn,CÞ:

We define a Markov model M by taking MDMGMM as some
well defined subset of the general Markov model. Similarly, a
rate-matrix model eL is defined by taking LDLGMM as some well
defined subset of rate-matrices drawn from the general rate-
matrix model and taking the set of exponentials thereof (as in
(1)). It follows immediately from these definitions that all rate-
matrix models are Markov models. In what follows we are
primarily interested in the case that M¼ eL, and in this case we
will abuse our terminology and refer to L as a ‘‘model’’.

Definition 2.1. A Markov model M is said to be multiplicatively

closed if and only if for all M1,M2AM we also have M1M2AM.

Of course, recalling that matrix multiplication is associative, this
is exactly the statement that M forms a semigroup under matrix
multiplication, and is identical to the definition of ‘‘substitution
model’’ given in Gronau et al. (2009).
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