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A partial differential equation model is developed to understand the effect that nutrient and acidosis

have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and

apoptotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend

upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less

nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient

consumption and acid production by quiescent and proliferating cells shows low nutrient levels do

not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance

between proliferating and quiescent cells within the tumour which is important; decreased nutrient

levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this

effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid

concentrations have on the rates of cell quiescence and necrosis.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Multicellular tumour spheroids (MCTS) are three-dimensional
cellular aggregates which mimic many of the characteristics of
in vivo avascular tumours (Mueller-Klieser, 1997). They have been
the focus of research for experimentalists and applied mathema-
ticians over the past 30 years (Araujo and McElwain, 2004; Roose
et al., 2007). Whilst able to mimic many characteristics of in vivo

tumours, for instance the observed spatial variation in oxygen and
glucose concentrations from the outer to inner regions (Kunz-
Schugart et al., 1998; Mueller-Klieser, 1997), MCTS are not widely
used in cancer drug discovery, due to the cell culture techniques
being more complex than standard 2D monolayers (Tung et al.,
2011).

Initial mathematical modelling work in the area focused on
simple models describing MCTS growth in the context of nutrient
delivery to the tumour (Burton, 1996; Greenspan, 1972). With
time and further experimental understanding a number of con-
tinuum mathematical models have been developed which have
focused on the effect certain biological mechanisms (biochemical

and biomechanical) have on MCTS development (see, for example
Breward et al., 2002; Netti et al., 1995; Ward and King, 1997). The
work presented here involves mathematical modelling of two
different aspects of tumour growth; the cell cycle and acidosis
and the effects both of these have on MCTS growth.

The cell cycle is a series of tightly regulated biochemical
events which control the growth and development of a cell. To
summarise: cells grow during G1 phase before entering a period
during which their DNA is synthesised (S-phase). G2, a short
period following S-phase, allows the cell time to prepare for cell
division, involving splitting of the DNA spindle and physical
division of the cell in two (M-phase). The newly generated cells
may enter a period of extended time without further prolifera-
tion. Such cells are defined to have entered the quiescent G0
phase. In tumour biology entering such a phase is usually driven
by factors external to the cell, for instance a decrease in growth
factors or nutrient deprivation. Cells may undergo two basic
forms of cell death; apoptosis or necrosis. Apoptosis is a decision
by a cell to commit cell ‘suicide’. In doing so the cell shrinks to
form an apoptotic body which is removed by the immune system.
Physiological events, such as decreased nutrient concentration
within the tumour or high acidity, can have harmful effects on
quiescent cells and may eventually lead to necrosis; the breaking
down of the cellular wall and release of cell contents into the
extracellular environment.
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Recent experimental and mathematical modelling work has
elucidated the importance of pH levels on tumour morphology.
Noninvasive magnetic resonance (MR) techniques have been
developed to measure both intracellular pH (pHI) and extracel-
lular pH (pHX) of human and animal tissues (Gillies et al., 2004,
2002). Virtually all tumour pH data to date show an acidic pHX

and alkaline pHI relative to normal tissue. Moreover, it is found
that the pHX becomes more acidic as the tumour grows, consis-
tent with reduced perfusion (Gillies et al., 2002). Clinical speci-
mens have shown that these changes have a molecular basis in
upregulation of glucose transporter 1 and the Naþ =Hþ exchanger
(Gatenby et al., 2007); the developed mathematical models
(Smallbone et al., 2007) have shown excellent agreement with
experimental data on the distribution of upregulated cells.

There exists a growing number of mathematical models in the
tumour literature which have been developed to understand the
role of the cell cycle in tumour growth. These include dynamic
models which encorporate simple (Bajzer et al., 1997; Bertuzzi
et al., 1981; Cojocaru and Agur, 1992; Hillen et al., 2010) or
complex (Zhao and Ricci, 2010) descriptions of the cell cycle, the
spatiotemporal distribution of the cell cycle state within MCTS
(Billy et al., 2009; Jeon et al., 2010; Mahmood et al., 2011; Tindall
and Please, 2007; Tindall et al., 2008) and therapeutic interven-
tions (Billy et al., 2009; Zhao and Ricci, 2010). To our knowledge
no mathematical model currently exists which has considered
how nutrient and acidosis levels affect the spatiotemporal cell
cycle state of tumour cells and dead cell material within an
avascular tumour.

In this paper we consider a mathematical model of a MCTS
which includes a simple model of the cell cycle, where cells are
considered to exist in either a proliferating, quiescent or dead cell
(due to necrosis or apoptosis) state. The model includes a
description of the nutrient and acid concentration within the
MCTS. In what follows, the effect these have on the distribution of
proliferating cells, quiescent cells and dead cell material and the
overall tumour size, is investigated.

2. Model formulation

Let Pðx,tÞ, Q ðx,tÞ and Mðx,tÞ represent the density of proliferat-
ing cells, quiescent cells and dead cell material per unit volume,
respectively, whose mass conservation is described by

Ptþr � ðuPÞ ¼ ðKBðCÞ�KQ ðC,HÞ�KAÞPþKPðCÞQ , ð1Þ

Qtþr � ðuQ Þ ¼ KQ ðC,HÞP�ðKDðC,HÞþKPðCÞÞQ , ð2Þ

Mtþr � ðuMÞ ¼ KAPþKDðC,HÞQ�lM, ð3Þ

where uðx,tÞ represents the local velocity of the cells and KI

(I¼ B,P,Q ,D,A) are cell cycle transition, or birth/death rates, which
we assume are dependent upon the local diffusible nutrient Cðx,tÞ
and extracellular hydrogen ion (acid) concentration Hðx,tÞ.
We assume that dead cell material is lost from the tumour at a
constant rate l (as first observed in Greenspan, 1972).

We note that our work differs from other models by explicitly
accounting for proliferating cells, quiescent cells and dead cell
material. Comparative papers (Ward and King, 1997, 1998) only
account for live and dead cells within an MCTS. Although we have
recently considered the effect of different spatial velocities,
dependent upon the cell cycle state of the cell and the cell’s local
extracellular nutrient gradient (Tindall et al., 2008), we have here,
for simplicity, assumed that all cells move with the same spatial
velocity. This assumption reduces the complexity of having to
account for varying cell cycle state structures, as a result of the

varying chemotactic response to the local environment within the
tumour.

We will take simple expressions for the KI which capture the
qualitative behaviour:

KBðCÞ ¼ kBC, ð4Þ

KPðCÞ ¼ kPC, ð5Þ

KQ ðC,HÞ ¼ kQ ðC1�CÞþk 0Q ðH�H1Þ, ð6Þ

KDðC,HÞ ¼ kDðC1�CÞþk 0DðH�H1Þ, ð7Þ

KA ¼ kAC1: ð8Þ

Here KB(C) represents the rate of cell birth, KP(C) is the rate of cell
transfer from the quiescent to proliferating compartments,
KQ ðC,HÞ is the rate at which cells move from the proliferating to
quiescent compartment (quiescence), KDðC,HÞ is the rate of cell
death from the quiescent cell compartment (necrosis), KA(C) is
cell death from the proliferating cell compartment (apoptosis)
and C1 and H1 denote the concentration, respectively, of nutrient
and acid at the tumour boundary which are assumed to be
constant.

Acidification leads to death of normal cells due to activation of
p53-dependent apoptosis pathways, as well as loss of function of
critical pH-sensitive genes (Park et al., 1999; Williams et al.,
1999). Tumour cells, however, may be relatively resistant to
acidic pHX . Whilst normal cells die in environments with a
persistent pH below about 7, tumour cells continue to proliferate
in a relatively acidic medium (pH 6.8) (Casciari et al., 1992).
Beyond this point quiescence and eventually necrosis occur (Patel
et al., 2001). This biological knowledge is reflected in the mono-
tonic increase of quiescence KQ and necrosis KD with H.

Given that the rate of diffusion of nutrient throughout the
spheroid is rapid compared to the time scale of growth, we adopt
the standard quasi steady-state assumption (Ward and King,
1997):

DCr
2C ¼ sCðPþECQ ÞC: ð9Þ

This equation has two nutrient consumption terms, one relating
to proliferating cells (sC) and the other to quiescent cells (sCEC).
Here DC is the nutrient diffusion coefficient.

In the case of acid diffusion throughout the spheroid, we also
make a quasi steady-state assumption:

DHr
2H¼�ðPþEHQ ÞðsHþs0HðC1�CÞÞ, ð10Þ

where the acid diffuses at a rate DH and sH and sHEH represent the
production of acid by proliferating and quiescent cells, respec-
tively. Note that CrC1 and HZH1, given the respective bound-
ary conditions and application of the maximum principle.

In Eqs. (9) and (10), EC 51 and EH 51, representing the fact
that quiescent tissue is essentially metabolically inactive, con-
suming significantly less oxygen than its proliferating counterpart
and producing significantly fewer hydrogen ions. Tumours rely on
anaerobic metabolism and hence produce acid at a rate sH under
normoxic conditions (the Warburg (1930) effect); nonetheless, as
oxygen levels decrease, acid production increases linearly at rate
s0H (the Pasteur effect, Racker, 1974). Whilst more complex
descriptions of tumour metabolism are possible (see, for example
Bertuzzi et al., 2007; Forbes et al., 2006), in this form the size of
the parameter space remains tractable.

We adopt the common assumption that the tumour is sphe-
rical and thus we will consider solutions in the one-dimensional
spherical polar coordinates regime (see Section 4). This assump-
tion allows us to determine the motion of the cells by noting that
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