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In this paper, the dynamic behaviour of the ‘‘click’’ mechanism is analysed. A more accurate model is

used than in the past, in which the limits of movement due to the geometry of the flight mechanism are

imposed. Moreover, the effects of different damping models are investigated. In previous work, the

damping model was assumed to be of the linear viscous type for simplicity, but it is likely that the

damping due to drag forces is nonlinear. Accordingly, a model of damping in which the damping force is

proportional to the square of the velocity is used, and the results are compared with the simpler model

of linear viscous damping. Because of the complexity of the model an analytical approach is not

possible so the problem has been cast in terms of non-dimensional variables and solved numerically.

The peak kinetic energy of the wing root per energy input in one cycle is chosen to study the

effectiveness of the ‘‘click’’ mechanism compared with a linear resonant mechanism. It is shown that,

the ‘‘click’’ mechanism has distinct advantages when it is driven below its resonant frequency. When

the damping is quadratic, there are some further advantages compared to when the damping is linear

and viscous, provided that the amplitude of the excitation force is large enough to avoid the erratic

behaviour of the mechanism that occurs for small forces.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The flight mechanism of diptera has been studied for many years,
and various mechanical models for this mechanism have been
postulated. One such model, accepted by some in the community
as being representative of the actual mechanism, involves the ‘‘click’’
mechanism (Boettiger and Furshpan, 1952; Pringle, 1957). Several
papers on this topic have been written (for example, Thomson and
Thompson, 1977; Miyan and Ewing, 1985, 1988; Bennet-Clark,
1986; Ennos, 1987; Pfau, 1987; Gronenberg, 1996; Brennan et al.,
2003). Fig. 1 shows the flight mechanism described by Thompson
and Thompson (1977). Brennan et al. (2003) proposed a simple
mechanical model of this ‘‘click’’ mechanism, which is shown in
Fig. 2a. Referring to this figure, the driving force from the scutellar
lever is applied at C. The notum and pleural apophysis are modelled
as two cantilever beams BE and DF, respectively. Rigid link ABC and
CD, which represent the wing and parascutum, respectively, are
pivoted at points B, C and D. The hinge at B represents the wing
process. The hinge at C corresponds to the first axillary sclerite.
Following analysis of the dynamics of this model they concluded
that the ‘‘click’’ mechanism, which is inherently nonlinear, has
advantages over a linear resonant mechanism provided that it is

operated at a frequency much lower than the resonance frequency,
which would be the case for very small flies. In that paper two main
assumptions were made. The first was that the energy loss mechan-
ism due to lift and drag forces on the wing could be represented by a
linear viscous damper, and second was that the equation of motion
of the mechanical model could be simplified to the Duffing
equation (Kovacic and Brennan, 2011).

Recently, Cheng et al. (2010) analysed the influence of body
rotation on the aerodynamic force and torque production during
fast turning manueuvers in the fruit fly Drosophila. The damping
coefficients and time constants were estimated based on both
simulations and experimental results to obtain the effects of passive
aerodynamic damping in turning flight. In the flight mechanism of
diptera, the damping force due to the aerodynamics is strongly
influenced by the Reynolds number. When a body passes through a
fluid at high Reynolds numbers, the flow separates and the drag
force is nearly proportional to the square of the velocity and can be
treated as a quadratic damping force. When the Reynolds number is
small the advective inertial forces are small and the damping force
can be assumed to be proportional to the velocity (Nayfeh and
Mook, 1995). Because of the small size and relatively low flight
velocity, the Reynolds number for an insect is smaller than a bird
and common air vehicles. For the smallest insects, which weigh
about 20–30 mg, the Reynolds number is about 10, while the
Reynolds number for large insects, which weigh about 2–3 g is
around 5000–10000 (Ellington, 1999; Meuller and DeLaurier, 2003).
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Thus, for small diptera, the damping force may lie somewhere
between linear and quadratic forms.

The aim of this paper is to further investigate the dynamic
model of the ‘‘click’’ mechanism investigated by Brennan et al.
(2003). The assumptions they made (given above) are revisited
and a more accurate description of the dynamic behaviour of the
model is sought. The relative influence of linear and quadratic
damping forces is investigated and a numerical method is used to
investigate the dynamic behaviour.

2. Dynamical model

The perturbed model of the flight mechanism of Fig. 2a is shown
in Fig. 2b. The displacement of the mass y is the instantaneous
elevation of C from BD and x is the lateral bending of the
cantilevers. This model has three static equilibrium positions as
shown in Fig. 2c. When the cantilevers have no deformation, there
are two stable static equilibrium positions corresponding to the
dotted and the dashed-dotted lines. When C lies on the line BD,
such that the wing is in the horizontal position, the system is in a
static unstable equilibrium position; any perturbation results in the
system to move to one of the stable equilibrium positions. The mass

C can move in positive and negative directions along the y axis. The
potential energy of the system shown in Fig. 2b is given by

U ¼ k �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�y2

q� �2

ð1Þ

where k is the bending stiffness of each of the two vertical uniform
cantilever beams, 2b is the distance between the two cantilever
beams and l is the length of BC or CD. The restoring force can be
obtained by the taking the derivative of the potential energy to give

2kð�1þb=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�y2

p
Þy. When this is combined with the mass m, and

a sinusoidal exciting force of amplitude P and frequency o is
applied, the resulting equation of motion is given by

m €yþ2k �1þ
bffiffiffiffiffiffiffiffiffiffiffiffiffi

l2�y2
p

 !
y¼ P cosot ð2Þ

Assuming linear viscous damping with damping coefficient c1

a non-dimensional equation of motion can be written as

u00 þg1u0�auþab uffiffiffiffiffiffiffiffiffiffiffiffi
1�u2
p ¼ F cosOt ð3Þ

where u¼y/l, g1¼c1/mo0, o2
0 ¼ 2kð1=b2

�1Þ=m, b¼b/l, F ¼ P=mlo2
0,

t¼o0t, O¼o/o0, a¼ b2=ð1�b2
Þ and (�)

0

denotes differentiation

Fig. 1. (a–c) Diagram showing the flight motor of an insect and three successive positions of the wing articulation during the course of a beat, from the up position (a) to

the down position (c); ax1, ax2—axillary sclerites 1 and 2; n—notum; p—parascutum; pm—pleurosternal muscle; pn—anterior notal process; pw—wing process;

rv—base of radial vein; sl—section through scutellar lever (after Thomson and Thompson, 1977); pa—pleural apophysis (shown in Pringle, 1957).
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