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Recently, a novel linearized constitutive model with a new strain measure that absorbs the material

nonlinearity was validated for arteries. In this study, the linearized arterial stress–strain relationship is

implemented into a finite element method package, ANSYS, via the user subroutine USERMAT. The

reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open

sector (zero-stress state). The residual strain is taken into account by analytic calculation and the

incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element

analyses are conducted to demonstrate potential applications of this approach in a complex boundary

value problem where angioplasty balloon interacts with the vessel wall. The model predictions of

transmural circumferential and compressive radial stress distributions were also validated against an

exponential-type Fung model, and the mean error was found to be within 6%.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Finite Element Method (FEM) has been extensively used to
analyze the mechanics of blood vessels (Perktold and Rappitsch
1995; Delfino et al., 1997; Bathe and Kamm 1999; Berry et al.,
2002; Gasser et al., 2002; Holzapfel et al., 2002; Chua et al., 2004;
Raghavan et al., 2004; Zhang et al., 2004; Liang et al., 2005;
Liu et al., 2008). There are still some practical issues, however,
that need further investigations. For instance, shell theory
(Perktold and Rappitsch 1995; Berry et al., 2002) is not sufficient
for thick-walled vessels, and isotropic models (Delfino et al.,
1997; Bathe and Kamm 1999; Chua et al., 2004; Raghavan et al.,
2004; Liang et al., 2005) are first-order approximation that do not
reflect the anisotropy of vascular tissue. Gasser et al. (2002) and
Holzapfel et al. (2002) implemented a microstructure-motivated
constitutive model, but their geometric model of vessel selects
the zero-stress state as the reference configuration which is not
always convenient. Zhang et al. (2004) incorporated the Fung
model into ANSYS, but their analysis was limited to small shear
deformation. Liu et al. (2008) analyzed the effects of myocardial
constraint, but their code did not extend to complex loadings;
e.g., contact between a device and vessel wall.

Among the biomedical FEM applications, several groups have
analyzed balloon angioplasty to understand the interaction
between the balloon and the stent (Oh et al., 1994;
Gourisankaran and Sharma 2000; Holzapfel et al., 2002; Gasser
and Holzapfel 2007). Oh et al. (1994) simulated the response of
atherosclerotic arteries to balloon angioplasty, where the arteries
were described by an isotropic material model. Gourisankaran
and Sharma (2000) also used an isotropic model and investigated
the stresses in the arterial wall and atherosclerotic plaque of
diseased arteries induced by balloon dilatation. Holzapfel et al.
(2002) simulated balloon angioplasty using a layer-specific three-
dimensional anisotropic model based on in vitro magnetic reso-
nance imaging of a human stenotic postmortem artery. The FEM
analysis of Gasser and Holzapfel (2007) considered the balloon-
induced overstretch of remnant non-diseased tissues in anthero-
sclerotic arteries. The model took into account the multi-layer
structure of the artery including media, adventitia, and plaque;
residual stresses; and plastic response of the tissue beyond the
elastic limit as well.

Here, we implement a linearized anisotropic arterial constitutive
relation in a commercial FEM package ANSYS v11.0 (ANSYS, Inc.).
The linearized relation has the advantage of having less material
parameters than the general anisotropic constitutive relation
of Fung’s type, which makes it easier to determine the para-
meters from experimental data. The advantage of commercial
FEM package is that general boundary value problems having
complex contact and fluid–solid interaction are readily solvable.
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Illustratory examples of balloon (compliant and noncompliant)
angioplasty involving compliant and noncompliant balloons are
solved and compared based on the proposed platform. We also
validate the transmural stress predictions with a Fung type
model. The technical feasibility of this approach and the potential
applications are envisioned.

2. Methods

2.1. Deformation and constitutive model

The mechanical property of blood vessel wall is modeled as
being cylindrically orthotropic, elastic and nearly incompressible.
The zero-stress state (ZSS, described by cylindrical coordinates
R, Z, Y) is a cut-open sector (Fig. 1(a)), and the deformed
configuration (described by cylindrical coordinates r, z, y) is a
closed circular tube (Fig. 1(b)). For convenience, the reference
configuration is selected as the no-load state where the vessel is
intact and subjected to zero blood pressure and no axial stretch.
Therefore, there is a residual deformation gradient from ZSS to the
reference configuration, as will be given later. At ZSS, the inner
and outer circumferences, Li and Lo, and the cross-sectional wall
area A0 are measured. The inner and outer radii of the open sector
Ri and Ro, and the opening angle F are

Ri ¼
wLi

2p , Ro ¼
wLo

2p , F¼ p�
L2

o�L2
i

4A0
, w¼ p

p�F
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ð1Þ

Following the coordinate ordering in ANSYS, we relate the
deformed configuration (r, z, y) to the cylindrical reference
configuration (x, z, c) by

r¼ rðx,zÞ, z¼ zðx,zÞ, y¼c ð2Þ

Thus the total deformation gradient F (referring to ZSS) is
calculated as the tonsorial product of the deformation gradient
from the reference configuration to the current deformed config-
uration, F1, and that from ZSS to the reference configuration, F0, as

F¼F1UF0. The matrix form is

F¼ F1F0 ¼
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where Lr, Lz and Ly are the principal stretch ratios in the
reference radial, axial and circumferential directions, respectively,
which can be analytically calculated from the incompressibility
condition (Zhang et al., 2004; Rachev et al., 1996), as

Lr ¼
@r

@R
¼

R

wLzr
, Ly ¼

wr

R
ð4Þ

in which Lz equals to the prescribed axial stretch, and the relation
between the reference and ZSS radial coordinates, r and R,
respectively, is

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i þðr
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i ÞwLz
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where ri is the inner radius of the no-load reference configuration.
A substitution of Eq. (5) into (4) provides F0 expressed analytically
in terms of Ri, w, Lz, ri, and the radial coordinate, r, in the no-load
configuration. In ANSYS USERMAT, F0 is calculated and stored at
every integration point.

To define strain, F is usually decomposed (Ogden 1984) as

F¼RU ð6Þ

and the right Cauchy-Green deformation tensor is calculated as:

C¼ FT F¼U2
ð7Þ

In the constitutive model of vessel wall used in this analysis, we
employ a logarithmic-exponential (log-exp) strain tensor, which is
defined to absorb the material nonlinearity (Zhang et al., 2007b)

D¼ exp½nðI1�3Þ�lnU ð8Þ

where n is a nonlinearity parameter, and I1 the first invariant of C

I1 ¼ trðCÞ ¼ trðFT FÞ ¼ trðU2
Þ ð9Þ

Correspondingly, a co-rotational Cauchy stress T was intro-
duced (Zhang et al., 2007b), as

T¼ Te
þHI ð10Þ

where H is the negative hydrostatic pressure, and Te is the
deviatoric stress due to deformation, and is related to the
deviatoric Cauchy stress re by re ¼RT TeR.

In our analyses (Zhang et al., 2007a, 2007b; Liu et al., in press) on
the experimental data of coronary arteries in triaxial deformation
(axial stretch, inflation and torsion) (Lu et al., 2003), it was found
that the log-exp strain D and the deviatoric co-rotational Cauchy
stress Te can be closely fit by a generalized Hooke’s law D¼M:Te,
where M is a constant forth-order compliance tensor as for the
classical Hooke’s law of linear elastic materials. For blood vessel, M
satisfies incompressibility condition, M:I¼0 such that hydrostatic
pressure does not induce any deformation. In axisymmetric defor-
mation, as in the present simulation of balloon angioplasty, the
generalized Hooke’s law can be expressed in a matrix form, as
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where[M] is the matrix representation of the compliance tensor M.
The parameters E1, E2 and E3 can be interpreted as Young’s moduli
in reference to the log-exp strains, G23 is the shear modulus, and
n12, n13 and n23 are Poison’s ratios. Unlike the general orthotropic
materials where the six parameters E’s and n’s in Eq. (11) are
independent, the incompressibility condition M:I¼0 imposes

Ro
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ri

ro

Φ

No-load configuration

Zero-stress configuration

Fig. 1. The zero-stress state (a) and deformed state (b) of the arterial vessel. The

reference configuration is a deformed state without pressure and axial stretch, i.e.,

the no-load state.
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