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a b s t r a c t

Individual-based models of self-propelled particles (SPPs) are a popular and promising approach to

explain features of the collective motion of animal aggregations. Many models that capture some

features of group motion have been suggested but a common framework has yet to emerge. Key to all of

these models is the inclusion of ‘‘noise’’ or stochastic errors in the individual behaviour of the SPPs.

Here, we present a fully stochastic SPP model in one dimension that demonstrates a new way of

introducing noise into SPP models whilst preserving emergent behaviours of previous models such as

coherent groups and spontaneous direction switching. This purely individual-to-individual, local model

is related to previous models in the literature and can easily be extended to higher dimensions. Its

coarse-grained behaviour qualitatively reproduces recently reported locust movement data. We suggest

that our approach offers an alternative to current reasoning about model construction and has the

potential to offer mechanistic explanations for emergent properties of animal groups in nature.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling the collective motion of animals remains a tantalising
problem for scientists of a host of different disciplines. Both visually
attractive and scientifically challenging, the concept remains useful
because of its applicability to both animation (Reynolds, 1987) and
control systems (Liu et al., 2003; Tanner et al., 2007) as well as the
fundamental ecological understanding it brings (Sumpter, 2006).
Many individual-based models have emerged in the last few
decades that exploit advances in computational power to describe
features seen in collective animal motion including group decision
making (Couzin et al., 2005; Conradt and Roper, 2007), information
flow (Sumpter et al., 2008) and response to predation (Wood and
Ackland, 2007). This article focuses on the development of 1D
models that seek to describe some of the simplest observed features
in collective motion. Such models are now known collectively as 1D
self-propelled particle (SPP) models.

In recent years the biological relevance of these models has
been demonstrated as a result of the development of novel,
approximately 1D, experimental systems. By constraining march-
ing bands of locust nymphs to a specially constructed annular
arena Buhl et al. (2006), and more recently Yates et al. (2009), have

shown that these insects do indeed behave in a manner that is
qualitatively comparable to 1D SPP models. In particular this work
demonstrated that SPP models capture the spontaneous turns of
the locust bands, where the entire group reverses its direction of
motion without external input. It is believed that the origin of these
observations lies in internal, or intrinsic, stochastic effects or
‘‘noise’’ which may or may not correspond to inaccuracy of the
individual movements (e.g Buhl et al., 2006; Couzin et al., 2005).

Recently, the coarse-grained behaviour of 1D SPP models has
been compared to locust movement in a more systematic way.
From their study Yates et al. (2009) suggested that the insects
respond to a decrease of group alignment by increasing the noise in
their movement. The importance of this finding is that the addition
of simple noise terms is not necessarily sufficient to describe and
explain collective motion in animals. However, despite its great
importance the origin of this stochasticity is far from clear.

In this research we focus exclusively on a simple 1D SPP model,
and show how a combination of an asynchronous updating scheme
and a novel implementation of particle interactions can produce a
coarse-grained behaviour which reproduces findings by Yates et al.
(2009) in locust movement data. The novelty of our research lies in
the fact that all noise in the system emerges from the algorithmic
implementation of our model rather than being added to the
movement of particles. We therefore work towards explaining the
origin of stochasticity in animal collective motion using our
modelling approach.

First we give an overview of selected 1D SPP models described
in previous work and the results that they give. Second we

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

0022-5193/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jtbi.2010.08.034

� Corresponding authors at: York Centre for Complex Systems Analysis,

University of York, PO Box 373, York YO10 5YW, United Kingdom.

Tel.: +44 1904 328650; fax: +44 1904 328505.

E-mail addresses: nwfb500@york.ac.uk (N.W.F. Bode),

ajw511@york.ac.uk (A. Jamie Wood).

Journal of Theoretical Biology 267 (2010) 292–299

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2010.08.034
mailto:nwfb500@york.ac.uk
mailto:ajw511@york.ac.uk
dx.doi.org/10.1016/j.jtbi.2010.08.034


introduce our modelling approach. We then show that our model
can produce stable groups and spontaneous direction switching
and study the coarse-grained behaviour of our model via an
equation-free approach using numerical simulations. We con-
clude by commenting on the potential of our modelling approach
for integrating individual-level characteristics and describing
motion in dimensions greater than one.

2. SPP models

The first 1D SPP model simulated particles with a local aligning
behaviour on a continuous line with periodic boundary conditions
(Czirók et al., 1999). In this model the individual and continuous
velocities and positions are updated sequentially and simulta-
neously for all individuals. Particles tend to align with the average
velocity of all particles within a fixed distance from them. This
alignment is subject to a stochastic error in the form of uniformly
distributed noise which is explicitly added to the particles’
response to the average local velocity. An antisymmetric function
G is applied to the preferred velocity of individuals and introduces
both propulsion and friction to the system. The individual
velocities ui(t) are therefore updated as

uiðtþ1Þ ¼ Gð/uðtÞSiÞþxi, ð1Þ

where /uSi is the local average velocity for particle i and xi is a
random variable with uniform probability distribution over a
finite interval ½�Z=2,Z=2� (Czirók et al., 1999). The function G(z) is
given by

GðzÞ ¼
1

2
ðzþsgnðzÞÞ, ð2Þ

which sets the average of the individual speeds in the absence of
particle interactions to magnitude 1 (Czirók et al., 1999). Analysis
of the model has indicated that the average velocity of all particles
undergoes a phase transition from an ordered state to a disordered
state when the amplitude of the noise (Z) or the particle density is
varied (Czirók et al., 1999). Such phase transitions have also been
observed for SPP models in two and three dimensions which
suggests that some features of higher-dimensional systems are
preserved in 1D models (Vicsek et al., 1995; Grégoire and Chaté,
2004; Chaté et al., 2008). For certain parameter values the model
exhibits a fascinating direction switching behaviour—the average
velocity of all particles in the system changes sign spontaneously
and on a short time-scale compared to longer intervals of sustained
high absolute values of the average velocity. Several variants of this
scheme to introduce noise have been published (Chaté et al., 2008).

Another approach has been to implement SPP models on a 1D
lattice with periodic boundary conditions over which particles
move with velocities +1 or �1 (O’Loan and Evans, 1999; Raymond
and Evans, 2006). In the first model of this type particles align with
the velocity of the majority of particles around them with a given
probability (O’Loan and Evans, 1999). The magnitude of this
probability is the first source of noise in the model. The second
source of noise and an important aspect of the model related to this
research is its asynchronous updating scheme. In each step only the
position and velocity of one, randomly chosen particle, are
updated. Simulations of the model showed a phase transition from
high to low average particle velocities for increasing sizes of the
aligning probability. This is qualitatively similar to the phase
transition exhibited by the model of Czirók et al. (1999).

This asynchronous 1D SPP lattice model was subsequently
extended significantly by the inclusion of repulsion and attraction
into the individual behaviour of the particles and the modification
of the alignment behaviour (Raymond and Evans, 2006). The
authors justified their implementation of the different behaviours

by showing that they correspond qualitatively to taking random
samples of neighbours (Raymond and Evans, 2006). This imple-
mentation results in two separate parameters which control the
size of the error or noise in the reaction of individuals to their
surrounding neighbours. One parameter controls the error arising
from stochastically sampling the local group to determine the
particle’s preferred direction and the other parameter introduces
uncorrelated errors (Raymond and Evans, 2006).

In summary, 1D SPP models show a wealth of emergent
behaviours which have increasingly been compared to real collective
animal motion. The way stochastic errors have been included into
such models can roughly be divided into three categories. First,
adding a random variable to the preferred direction of individuals
(Czirók et al., 1999). Second, asynchronous and probabilistic updates
(O’Loan and Evans, 1999; Raymond and Evans, 2006). Third, varying
the probability and accuracy with which individuals execute their
behavioural rules (O’Loan and Evans, 1999; Raymond and Evans,
2006). In the next section we will introduce our model which takes
inspiration from the second and third approaches.

3. Modelling approach

In our model N individuals are represented by points on a
continuous line and not by points on a lattice as in some of the
models discussed above. The individuals, indexed i, are char-
acterised by their position xi and instantaneous velocity yi and
they react to their ‘‘neighbours’’ which are less than a distance rA

away from them. We assume that each individual reacts with an
identical stochastic rate to its surroundings. This defines an
implicit master equation that in principle could be solved with a
stochastic simulation algorithm (Gillespie, 1976). Instead, we
exploit the identical rates and a simple particle picking approach
to simulate the system (O’Loan and Evans, 1999). The algorithmic
implementation of our model is as follows:

1. Choose individual i at random, where i¼1,y,N (equal
probabilities, with replacement).

2. If i has neighbours, choose a neighbour k of i at random (equal
probabilities for all individuals within less than rA of i).

3. Update xi and yi (based on the interaction between k and i or
on previous yi if i has no neighbours).

N realisations of steps (1)–(3) constitute one update step of length
Dt time-steps (see also Fig. 1). The duration of this update step
corresponds to the reciprocal value of the algorithmic rate at
which individuals update. Small values of Dt imply rapid updates,
while large values of Dt imply slow updates. The output of the
model is obtained by recording the positions and velocities of all
individuals every T ¼ lDt time-steps, where lZ1. This is
analogous to how data of animal motion are obtained empirically
where individual positions and orientations are sampled accord-
ing to the frame rate of video recordings (Aoki, 1980; Buhl et al.,
2006). In our simulations we keep T fixed and only vary Dt and
therefore also l.

Suppose individual i and a neighbour k of i have been chosen in
the algorithm described above. The interaction between i and k

depends on the distance d between the two individuals. If
drrOorA, i attempts to align with k and has desired velocity,

ydesired
i ¼ GðykÞ: ð3Þ

If rOodorA individual i gets attracted to k and has desired
velocity,

ydesired
i ¼ G sgnðxk�xiÞ

d�rO

rA�rO
þ1

� �� �
, ð4Þ
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