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ABSTRACT

Artificial Endocrine Pancreas (AEP) is one of the most optimistic approaches in Type 1 Diabetes Mellitus
(T1IDM) treatment due to the novel technological advances in continuous glucose monitoring,
exogenous insulin delivery, and their proofs in clinical assessments. The main goal of AEP is to replace
the pancreatic insulin secretion in the blood glucose regulation loop by means of an automatic
exogenous insulin infusion. The joint element between glucose sensing and insulin delivering actions is
an automatic algorithm-based decision. In this contribution, there is an H., control algorithm to
compute the insulin infusion rate during hyperglycemia, exercise and nocturnal hypoglycemia. In order
to mimic the insulin release pattern of a healthy pancreas, a frequency restriction in the insulin infusion
pattern generated by controller was considered in the design. The inclusion of mathematical models of
relations between glucose and chosen biosignals in the control loop generates an adequate insulin
infusion pattern to compensate blood glucose variations during each metabolic scenario. The proposed
automatic algorithm for decision shows good performance in controlling glycemia in metabolic
scenarios, avoiding long-term hyperglycemia as well as glycemic disturbances during exercise and
nocturnal hypoglycemia, guaranteeing insulin infusion with a delivery pattern closer to that generated

by a healthy pancreas.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a metabolic disease caused
by the auto-immune destruction of pancreatic —cells, resulting
in an insignificant release of insulin into the blood stream. The
developed treatments around T1DM have been addressed to
satisfy the insulin requirements, mainly through the re-establish-
ment of insulin delivery function, as pancreatic islet transplanta-
tion (Morath and Zeier, 2009; James et al., 2000), or by the
substitution of the secretory function by means of an external
mechanism, like insulin infusion (Pickup and Keen, 2002; Lenhard
and Reeves, 2001). In both options, the aim is to ensure enough
insulin to metabolize blood glucose (Korenman, 2000).

Since insulin was synthesized, daily insulin injections have
become the most accessible and popular treatment of T1DM,;
nevertheless, the successful substitution of the pancreatic insulin
release has required extensive work regarding the solution of its
essential problem: supplying the required insulin amount to
compensate blood glucose variations. Many advances have been
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addressed to develop suitable technology for insulin infusion and
glucose measurement (Lenhard and Reeves, 2001; Mastrototaro,
2000). The efforts to improve external infusion therapy have
resulted in the so-called Artificial Endocrine Pancreas (AEP). Such
device attempts to integrate continuous insulin infusion and
continuous glucose monitoring with an automatic algorithm
(Bequette, 2005), which computes the required infusion rate.
That means, the AEP might be the promising evolution of the
classic insulin infusion injections towards a real automatic insulin
delivery closer to pancreatic insulin release.

The AEP seeks to incorporate the physiological loop of glucose
regulation that determines pancreatic insulin delivery due to
variations of blood glucose concentration, promoting or inhibiting
insulin delivery to maintain glucose within its physiological
range. Clinical trials on the use of Continuous Subcutaneous
Insulin Infusion (CSII) and Continuous Glucose Monitoring (CGM)
suggest an improvement in glycemia management in T1DM
(Pickup and Keen, 2002; Kaufman et al., 2001); however, the
integration of the essential parts of the AEP (insulin pump,
glucose sensor and algorithm) is in its early stages. A recent study
has reported experimental closed-loop data employing intrave-
nous subcutaneous glucose sensors, implanted externally with
insulin pumps, and a PID (Proportional, Integral and Derivative)
control scheme as automatic algorithm for decision (Steil et al.,
2004). A couple of years later, a similar contribution has been
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reported in human T1DM patients (Steil et al., 2006). In spite of
these early advances, there are many issues to tackle towards the
integration of the AEP; in fact, the advances, challenges and main
problems to integrate the AEP have been clearly outlined recently
(Klonoff, 2007). In case of glucose sensing and insulin delivery the
problems are in designing a suitable way of insulin infusion,
trying to mimic the pancreatic release, and the precise measure-
ment of glucose concentration reducing complications (rejection,
fibrosis, inflammation, etc.), respectively. Regarding automatic
algorithm, its aim is to compute a continuously auto-adjustable
insulin infusion rate depending on the measurements of the
current blood glucose concentration value and metabolic condi-
tion of the patient. A very concise review about the closed-loop
algorithms for glycemic control in TIDM can be found in Youssef
et al. (2009).

The first attempt to automatize the decision was proposed in
early 60s (Kadish, 1964). In this approach a basic on-off scheme
was used, i.e. an established (and fixed) insulin amount was
delivered if blood glucose level was above the euglycemic range
(70-120mg/dl) and it was inhibited if the blood glucose was
within the euglycemic range; although this scheme has a very
basic sense of automatization, it did not determine the required
insulin amount for a specific blood glucose concentration. After
that, traditional techniques of classic control (Gopakumaran et al.,
2005) were applied to obtain control laws based on simple
mathematical models of glucose metabolism (Bergman et al.,
1981). In fact, traditional control schemes PI (Proportional-
Integral), PD (Proportional-Derivative) and PID have been used
in the first attempts to integrate the AEP (Steil et al., 2004, 2006;
Stuart et al., 2008). Understanding the control problem to
determine the pancreatic insulin delivery has required the use
of advanced control techniques. Along this line, some algorithms
based on nonlinear model predictive control (Hovorka et al., 2004;
Hovorka, 2006) and those based on mathematical compartmental
models of glucose metabolism (Parker and Doyle, 2000; Ruiz-
Velazquez et al., 2004; Femat et al., 2009). Since hyperglycemia
due to ingesta is the most common symptom in T1DM, all these
control approaches have been designed to avoid high blood
glucose concentration. Nevertheless, in order to reach an
acceptable glycemia control, more metabolic states must be
considered in the decision process. Two of the typical metabolic
scenarios of a TIDM patient are exercise and recurrent hypogly-
cemia induced by the insulin treatment. The necessity of having
an adequate automatic algorithm considering such metabolic
scenarios is the main motivation of our contribution. We propose
the design of a control algorithm based on H,, theory that takes
into account exercise and hypoglycemia, as well as hyperglyce-
mia. Moreover, a restriction in the insulin infusion rate computed
by the algorithm was imposed in order to mimic the delivery
pattern generated by a healthy pancreas.

2. Biosignals in algorithm-based decision control

Basal carbohydrate metabolism is altered if there are changes
in requirements or disposal of energy. Although the source of such
changes can be different physiological functions, the direct effect
derives from variations in blood glucose concentration. In a
control system where the controlled signal is the blood glucose
concentration, such variations can be considered as disturbances.
So, the aim is to design an automatic algorithm able to reach the
control objective even though disturbances (from different
sources) in the blood glucose concentration. We consider three
main sources of disturbances: (i) energy excess due to ingesta
(typical hyperglycemic scenario), (ii) energy requirement due to
physical exercise, and (iii) energy depletion due to hypoglycemic
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Fig. 1. Diagram of biosignals and associated metabolic scenarios.

scenarios. In this section, a mathematical model of each
disturbance source is presented. These models are obtained from
the relations of blood glucose concentration and three indicative
biosignals in each scenario: (i) insulin in hyperglycemia, (ii)
lactate in exercise, and (iii) adrenaline in hypoglycemia, as it is
shown in diagram of Fig. 1. Next, the modelling methodology and
the obtaining of each disturbance model are presented.

2.1. Modelling methodology: ARX technique

The ARX (AutoRegressive with eXternal input) is a modelling
technique of System Identification Theory used to propose
mathematical models from measured data of the system stimulus
(input) and response (output) (Ljung, 1999). The input data can be
represented by the set {u(1),u(2),...,u(kT),...,u(NT)}, where
u(kT)eR, ke{1,2,...,N} and NeN. N is the total number of
measured data taken at each sample time T. Likewise, the set of
output data is given by: {y(1),y(2),...,y(kT),...,y(NT)}, where
y(kT) e R. The input and output data sets form the general set of
measured data:

M = (1), y(1)), @2),y2)), ..., wEkT),y(kT)),..., w(NT),y(NT))

M
Because MV is a set of discrete data, the common form to

approach the system behavior is by means of a difference
equation:

Yy =~ y(k—1)— - —any(k—n)+bju(k—1)+ - - - +bau(k—n)  (2)

where ai,...,an,by,....,bpeR, neN, and k stands for a discrete
time moment. Eq. (2) can be written as: y(k)= ¢(k)'0 where
0=[a; --- ay by --- by]is the parameter vector and
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The parameter vector 0 can be estimated by the Least Square
Method, minimizing the estimation equation Vy(0,MN)
= Zﬁ’zl (- (k, 0))%. The 0 value satisfying Vy(0, MN) is the
estimated Oygiven by:

) N T N
On= {Z qo(k)qo(k)T] > ok (4)
k=1 k=1

Once the parameter vector is estimated, z-transform
(Z{y(k—1)} =z"1Y(2)) can be applied to Eq. (2) in order to obtain
the discrete transfer function:
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where AZ)=1+a1z" '+ .- +apz? and Bz)=b1z '+ --- +bgz 1.
Eq. (5) can be transformed in a continuous transfer function by
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