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We present an alternative method for calculating likelihoods in molecular phylogenetics. Our method is

based on partial likelihood tensors, which are generalizations of partial likelihood vectors, as used in

Felsenstein’s approach. Exploiting a lexicographic sorting and partial likelihood tensors, it is possible to

obtain significant computational savings. We show this on a range of simulated data by enumerating all

numerical calculations that are required by our method and the standard approach.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In his landmark paper, Felsenstein (1981) popularized the
method of maximum likelihood for phylogenetic estimation. This
method takes as input a set of aligned molecular sequences and
returns the ‘‘most likely’’ evolutionary tree that explains this data.
This is done by taking a candidate tree, together with a Markov
model that gives the probabilities for molecular state changes
along each edge of the tree conditional upon some unknown
parameters (such as edge lengths). An optimization routine then
obtains the MLE (maximum likelihood estimator) for each of the
unknown parameters by maximizing the probability of sampling
the observed sequences under this model. Crucial to practical
computational implementation of this approach was the intro-
duction of a ‘‘pruning algorithm’’, which, under the assumptions
of a reversible Markov process on a tree, allows for efficient
computation of the likelihood of observed molecular sequences.
Since this time, there has been an explosion in the use of the
maximum likelihood method in phylogenetic studies. There have
also been numerous algorithmic developments including compu-
tation with more general models (Boussau and Gouy, 2006; Yang,
1997) and heuristics speedups acting at the likelihood step
(Guindon and Gascuel, 2003; Stamatakis, 2006) or the tree search
level (Guindon and Gascuel, 2003; Whelan, 2007). However, at the

likelihood step, the basic algorithmic implementation still
proceeds by applying Felsenstein’s original recursive formula.

In this article, we present an alternative to the pruning
algorithm based on ‘‘partial likelihood tensors’’. Our approach
depends upon a conceptual shift in the way that we perceive the
intermediate quantities that must be calculated. This point of
view relies heavily on noticing that these intermediate quantities
can be brought to the fore as tensors (or multi-dimensional
arrays) with the rank of the tensors fluctuating as the algorithm
proceeds. This observation gives a fresh perspective on the
likelihood calculation and presents new possibility and fluidity
into the likelihood computation. By way of presenting this
conceptual shift, we will show that these tensors can be applied
in a practical context in giving a more efficient algorithm for
likelihood computation (under certain caveats that we discuss).
We emphasize that our method returns exactly the same
likelihood values as the standard approach; we simply achieve
this final result via an alternative route.

The particulars of the transition matrices do not concern us, as
our results are independent of the model of sequence evolution
(provided it is Markov). Hence, we will assume these matrices are
given, and concentrate on computational complexity at the
likelihood step. This is well justified, as, aside from the tree
search, the likelihood step is the most intensive part of maximum
likelihood estimation (Bryant et al., 2005). Given the task of
calculating the likelihood of a single site in a sequence alignment,
the method we present can actually be more cost intensive than
applying Felsenstein’s recursive formula. As we will show in
Section 2, the effectiveness of our method becomes apparent by
considering that in practice one is never calculating the likelihood
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of just a single site, but must calculate a likelihood value for each
site in the sequence alignment. As we will show in Section 3.1,
straightforward application of our method offers significant
computational savings for up to 16 taxa. For data sets with 416
taxa, the structural properties of our approach are such that
performance becomes significantly degraded. However, our
method stands as a novel approach to this problem and has
significant promise for the development of sophisticated algo-
rithms. In particular, we will show that the high performance our
method has for smaller numbers of taxa can be applied to larger
data sets. Due to the flexibility of our approach, it is possible to do
this in at least two different ways, and we discuss this in Section 4.
We present results for simulated data only, as the performance of
our method is dependant on the quality of the alignment and in
real-world cases this is obviously dependent on the alignment
algorithms used.

As noted by Felsenstein, the most obvious cost-saving measure
follows by observing that many site patterns in an alignment
occur multiple times and there is no need to recalculate the
likelihood each time. The process of identifying these common
sites is called ‘‘aliasing’’ (Felsenstein, 2004). Aliasing aside, the
basic premise of our method is that a large number of sites in an
alignment are often very similar to each other (two sites have
most states in common and differ on only 1 or 2 of the sequences).
This is certainly true for realistic data sets, as they have evolved
from a common ancestor in the not-too-distant past (at least by
hypothesis if not in fact). We define partial likelihood tensors (PLTs)
as multi-dimensional arrays that generalize Felsenstein’s partial
likelihood vectors (PLVs). Using these PLTs, it becomes advanta-
geous to sort the sites lexicographically and retain a few of these
PLTs as the likelihood of each site is calculated. These PLTs can
then be returned to when it comes to computing the likelihood of
the next site, resulting in a minimization of the total number of
calculations required.

An important aspect of our approach is that the lexicographic
ordering can be computed exactly and efficiently using an
OðNðmþkÞÞ radix sort (Cormen et al., 2001), where N is the
number of unique site patterns in the alignment, m is the number
of sequences and k is the number of possible character states. This
should be compared to the related ‘‘column sorting’’ approach of
Pond and Muse (2004), where, as the calculation moves through
the alignment, each PLV from the present site is retained.
Depending on how the next site differs from the present site,
some of the PLVs required for the next site will be identical to
those retained, and hence some superfluous computation can be
avoided. This approach relies upon a (heuristic) solution of a
travelling salesman problem (TSP) to find an ordering of sites that
maximizes the saving. The solution of the TSP used by Pond and
Muse is OðN2Þ, so we can expect that their technique works best
for shorter sequences. This is the direct converse of the approach
we present here, which is at its greatest power, relative to other
approaches, when the sequence length is long, such that the data
is very heterogeneous.

Another related approach is implemented by Stamatakis et al.
(2005) using ‘‘subtree equality vectors’’ (SEVs). This approach
extends the idea of aliasing to the subtree level: faced with the
need to calculate the likelihood on a given subtree, a sweep
through the corresponding sequences in the alignment is
performed, counting occurrences of homogeneous subpatterns.
(A homogeneous pattern is one in which each character state is
identical.) Only the homogeneous patterns are accounted for as a
general count would not amortize well with large data sets,
and the SEVs must be recomputed for each alternative tree.
Stamatakis et al. are primarily interested in the problem of
likelihood computations for data sets with very many taxa (103

and above).

2. Methods

Here we present our method, retroML, for computing the
likelihood of molecular sequence data under the assumption of a
Markov model on a rooted binary tree. We do this with the aid of
an example for a septet tree (Fig. 1). In Appendix A we give an
example for a tree with 16 leaves and in Appendix B we give a
generic presentation, valid for trees of any size. We will also
discuss the computational complexity of retroML as judged
against Felsenstein’s (1981) approach F .

We consider an alignment of m sequences, with no gaps. (It is
straightforward to modify our results for when there are gaps,
depending on how they are to be dealt with.) A ‘‘pattern’’ will be
the (ordered) sequence of states that occur at a given site in a
sequence alignment. The actual numeric values of the Markov
model parameters will be of no concern to us: our results depend
only on the number m of leaves of the tree, its topology,
the number k of states, and the number N of unique patterns in
the alignment. Thus, we take the transition matrices defining the
Markov process on the tree as given (with one matrix for every
vertex excluding the root) and consider the complexity of
computing partial likelihood vectors at the root, conditioned on
the patterns observed at the leaves. Rather than present empirical
timing results, which are dependent on computer hardware and/
or programming language, we will compare an exact count of
numerical operations required of retroML to that of F . For this
purpose, we define a ‘‘cost’’ of a computation as a pair
representing the numbers of multiplications and additions
required, respectively: sð�Þ ¼ ½s�ð�Þ; sþ ð�Þ� for retroML and
f ð�Þ ¼ ½f �ð�Þ; f þ ð�Þ� for the standard approach F .

2.1. Partial likelihood tensors

In Felsenstein’s method F , a partial likelihood vector (PLV) at a
vertex represents the likelihood of observing each of the k

possible states at that vertex, conditional upon a pattern of states
at the leaves of the subtree subtended by that vertex. For the i th
unique pattern, these PLVs are computed recursively by imple-
menting the formula
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where v is an internal vertex with children u1 and u2, and M
uj

ab is
the probability of a transition from state a to b along the edge
connecting v and uj. For a PLV at a leaf, the entry that corresponds
to the state present at that leaf is set to 1, whilst the other entries
are set to 0. This recursive formula plays a vital role in the efficient
implementation of all likelihood calculations in molecular
phylogenetics, and it is exactly this recursion that we aim to
supplant with our approach.

The basic components underlying retroML are partial like-

lihood tensors (PLTs), which can be thought of as generalizations of
partial likelihood vectors. A PLT represents the likelihood of
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Fig. 1. Septet tree.
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