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a b s t r a c t

We present a new computationally efficient method for large-scale polypeptide folding using coarse-

grained elastic networks and gradient-based continuous optimization techniques. The folding is

governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method

we are able to substantially reduce the computation time on ordinary desktop computers for simulation

of polypeptide folding starting from a fully unfolded state. We compare our results with available native

state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins,

Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small

de-novo protein, Chignolin. We also use two well known protein structure prediction software,

MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal

elastic network model can lead to higher accuracy and lower time required for simulation.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we present a novel approach for large-scale
polypeptide folding from fully unfolded state to native state
governed by the minimization of energy. The minimum energy is
determined from MJ contact potentials (Miyazawa and Jernigan,
1996). It is generally accepted that folding of a polypeptide is
governed by a funnel-like landscape (Dill, 1985; Leopold et al.,
1992; Creighton, 1992; Dill and Chan, 1997). We intend to explore
this funnel using continuous optimization techniques. Continuous
optimization methods are more efficient in determining local
minima than global stochastic search or combinatorial techni-
ques. The simplicity and efficacy of our method is supported by
our simple programs (written in MATLAB (www.mathworks.
com)) which can run on personal computers taking insignificant
time (generally 2–3 min) for small polypeptides; a moderate time
of less than 1 h for larger polypeptides; and much less time for
large proteins than other well-known methods.

While folding from an unfolded state to the native state, a
polypeptide undergoes large changes in conformation. We have
modeled these changes using the concept of an elastic network
(EN). EN was first proposed by Bahar and Jernigan (1997) to
provide a simple model for thermal fluctuations of proteins in

their native crystal structures. It has been used for normal mode
analysis (Haliloglu et al., 1997; Bahar and Rader, 2005) and for
analyzing motions of proteins around their native state (Atilgan
et al., 2001; Doruker et al.. 2001). Erman and Dill (2000)
developed a dynamic model of EN and used it to predict native
states. They showed that their model gave the same stable
conformations as those of the corresponding lattice models. Kim
et al. (2002) used EN to generate the intermediate states of
proteins when their initial and final conformations are specified.
Ball et al. (2002) framed protein folding problem as a variation of
traveling salesman problem based on EN. They developed a fast
combinatorial optimization method to predict native states of
some small proteins. Our novelty lies in using continuous gradient
based optimization on EN for predicting the native state, i.e.,
determining minimum energy (local minimum) conformations
starting from a random and often a fully unfolded state. The
deformations of the EN are expressed in terms of eigenvectors of
its stiffness matrix. Eigenvectors are used for linear analysis, i.e.,
for calculating small deformations only. Here, we have formulated
a novel algorithm by which we use eigenvectors for spanning the
space of conformation change rather than normal Cartesian
coordinates. By doing so we can produce large changes in
conformation of the protein with much fewer variables than
when the Cartesian coordinates themselves are taken as the
conformation variables. One can view this change in conformation
as similar to the deformation of an elastic structure under static
internal loads. The forces that guide this folding are based on a
novel potential function that uses MJ inter-residue contact
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potentials. As these forces are static in nature, we neglect inertia
or mass of the molecules but our method could consider this and
other dynamic effects. We take initial conditions as unfolded
states in which the protein is randomly oriented and fully
stretched without violating bond-length and bond-angle con-
straints. We determine its final conformation by minimization of
the energy using continuous optimization methods. We compare
the final conformation with structures from Protein Data Bank
(PDB; Bernstein et al., 1977) for a few de-novo proteins and two
natural proteins, namely, Ubiquitin and Lysozyme. In case of these
two naturally occurring proteins which are substantially larger
than the de-novo proteins, we had to incorporate additional
constraints to preserve the secondary structures.

The rest of the paper is organized as follows. In the next section
we give a brief description of how we use EN for modeling large
changes in conformation and formulate the energy minimization
problem. Then, we apply our model to a few de-novo proteins and
two natural proteins, namely Ubiquitin and Lysozyme. We
compare the minimum energy conformation derived from our
simulation with existing native conformations from PDB. We also
generate the energy landscape for a particular de-novo protein,
Chignolin (Honda et al., 2004). Next, we draw inferences from
these simulations and discuss about the possible advantages and
disadvantages of our technique. For Ubiquitin and Lysozyme, we
make a modification of our method by considering the secondary
structures as rigid bodies. We compare the results of our
simulations with two well-known protein structure prediction
software, namely MODELLER and GROMACS. The final section
contains concluding remarks.

2. Elastic network model

Fig. 1 shows an EN model of a small 10-residue long de-novo

protein called chigolin (PDB ID 1UAO). In this model all the Ca
atoms are connected to one another by imaginary linear springs.
Our EN model is a coarse-grained one as we assume all the amino
acid residues to be spheres centered on their respective Ca atoms.
As the bond-energies are much larger than the non-bonded
interactions (due to which conformational changes occur), we
take the length between the covalently linked residues to be fixed.
Hence, the bonded Ca atoms are joined by springs of high stiffness.
The non-bonded Ca atoms are joined by springs whose stiffness
depends on the MJ contact potential of interacting residues. A
lower MJ potential indicates lower stiffness and vice versa.

We derive the stiffness matrix K of the EN model (Cook et al.,
2002). Any small deformed shape of the EN can be expressed as a
linear combination of the eigenvectors of K. Thus, if fx0g is the
position vector of all the residues in EN at an initial condition, we
can express the position vector of all residues {x} of a nearby

conformation as

fxg ¼ fx0gþ
X3N

i ¼ 1

aifoig ð1Þ

where N is the number of residues in the polypeptide, {x} the
column vector of Cartesian coordinates of all Ca atoms; so its
dimension is 3N � 1, {oi} the ith eigenvector of K with dimension
3N � 1, ai the scalar multiplier associated with ith eigenvector
{oi}.

The scalar multipliers {ai} form the set of design variables in
our optimization problem formulation. By varying these coeffi-
cients we change the conformation and with it the energy of the
polypeptide. This method allows small changes in conformation
only since eigenanalysis is essentially linear. To apply this method
for large changes in conformation, we formulate a novel algorithm
which updates the stiffness matrix of EN of the polypeptide from
time to time as optimization progresses. This algorithm is shown
in Fig. 2. As explained in this figure, the rate at which we update
the stiffness matrix K is determined by the maximum number of
iterations (maxiter) specified to the optimization program. In Fig. 3
we show for different values of maxiter how conformational
energy of Chignolin varies with iteration as we minimize the
energy from a fully unfolded state. Table 1 compares the energy of
the final conformation, total number of iterations and actual CPU
time for different values of maxiter . It is interesting to note that
the energy of the optimal conformation shows insignificant
change as maxiter is varied (Table 1). Even when we do not

Fig. 1. Elastic network model of a small de-novo protein, Chignolin. The blue circles

represent the amino acid residues centered on their respective Ca atoms. The

covalently bonded residues are connected by black lines. The non-bonded residues

are connected by green lines. (For interpretation of the references to the color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Flowchart showing our algorithm for large change in conformation

determined using eigenvectors of stiffness matrix K of EN.

S. Rakshit, G.K. Ananthasuresh / Journal of Theoretical Biology 262 (2010) 488–497 489



Download English Version:

https://daneshyari.com/en/article/4497596

Download Persian Version:

https://daneshyari.com/article/4497596

Daneshyari.com

https://daneshyari.com/en/article/4497596
https://daneshyari.com/article/4497596
https://daneshyari.com

