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S u m m a r y

In a recent study [Cibert, 2008. Journal of Theoretical Biology 253, 74–89], by assuming that walls of

microtubules are involved in cyclic compression/dilation equilibriums as a consequence of cyclic

curvature of the axoneme, it was proposed that local adjustments of spatial frequencies of both dynein

arms and b-tubulin monomers facing series create propagation of joint probability waves of interaction

(JPI) between these two necessary partners. Modeling the occurrence of these probable interactions

along the entire length of an axoneme between each outer doublet pair (without programming any

cooperative dialog between molecular complexes) and the cyclic attachment of two facing partners, we

show that such constituted active couples are clustered. Along a cluster the dynein arms exhibit a small

phase shift with respect to the order according to which they began their cycle after being linked to a

b-tubulin monomer. The number of couples included in these clusters depends on the probability of

interaction between the dynein arms and the b-tubulin, on the location of the outer doublet pairs

around the axonemal cylinder, and on the local bending of the axoneme; around the axonemal cylinder,

the faster and the larger the sliding, the shorter the clusters. This mechanism could be involved in the

apparent cooperativity of molecular motors and the b-tubulin monomers, since it is partially controlled

by local curvature, and the cluster length is inversely proportional to the sliding activity of the outer

doublet pairs they link.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The motile axis of the flagella and cilia of eukaryotic cells —

the axoneme — is formed by nine outer doublets of microtubules
constituting nine outer doublet pairs (ODPs), which surround a
central apparatus organized around two central microtubules.
Because of the activity of dynein arms (DAs) and existence of
elastic links interconnecting the ODPs, the relative shear of the
ODPs is converted into bends (Gibbons, 1981; Lindemann, 1994a).
Local curvature of such bends may be associated with the twist of
the axonemal cylinder around its central axis (Cibert, 2001;
Gibbons, 1975).

The nature of the instantaneous regulation of this mechanism,
which allows propagation of a coherent wave train along these
organelles, is basically unknown in spite of the existence of clever
biochemical and topologic models. Such models consider the
curvature and the geometrical adjustments of the axonemal
machinery to be essential for the functioning of the ensemble of

diverse mechanisms (Brokaw, 1975; Dymek and Smith, 2007;
Gertsberg et al., 2004; Huang et al., 1982; Inaba, 2003; Li et al.,
2006; Lindemann, 1994a, 2007; Lindemann and Mitchell, 2007;
Mitchell, 2003a, 2003b; Morita et al., 2006; Morita and Shingyoji,
2004; Noguchi et al., 2000, 2005; Piperno et al., 1992; Rupp and
Porter, 2003; Smith and Yang, 2004; Wilson and Lefebvre, 2004;
Woolley, 2007, 1997).

In parallel to these biological models, the physical ones assume
that the couples ‘‘ODPs–molecular motors’’ produce alternative
fields of internal constraints during beating movements. One of
the most interesting hypothesis is the pioneering description of
these active entities as ‘‘auto-driven filaments’’ (Camalet et al.,
1999). These models postulate that the efficient DAs are
uniformly distributed along each ODP, and they produce forces
along the entire length of the ODPs. However, experimental
observations suggest that the DAs are active when they are
associated in clusters of four elements (Spungin et al., 1987),
making the DAs and their partners to become cooperative systems
in essence. Here, cooperativity is defined as the necessary inter-
molecular dialog occurring either inside a given molecular
complex or between different molecular complexes, as in the
case of allosteric enzymes.

From the known range of physical characteristics (elastic
constants) of microtubules and of ODPs (Fujime et al., 1972;
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Schoutens, 1994; Takano et al., 2003) one can assume that
microtubules are inextensible and incompressible in the limits of
normal beating cycles. However, different arguments plead in
favor of their deformations during the beating cycles. This allows
us to bring the hypothesis that two opposite sides of the outer
doublets included in the bending plane are subjected to dilation/
compression equilibrium controlled by the local balance of forces
and torques (Cibert, 2008). From the above discussion and the
assumption that dilation/compression sequences modulate the
periodic distributions of the DAs and the b-TM along the two
facing verniers during a beating cycle, the joint probability of
interaction (JPI) of the facing DAs and b-TM depends on: (i) local
curvature, (ii) local rate of sliding, and (iii) location of the ODPs
within the axoneme, all these three factors being taken into
account relative to the orientation of the bending plane (Cibert,
2008).

The JPI wave trains are created by the relative displacements of
the two molecular verniers, whose shearing could be positive,
negative, or nil, and whose special frequencies vary with respect
to local curvature of the model. Thus, the ‘‘sampling’’ of one
vernier by the other (and conversely), i.e. the coincidence
between their facing elements, is stroboscopic in essence, and
the apparent displacement of the JPI wave train could be tipward,
baseward, or nil, as a function of values of the physical parameters
that generate them, and not as a function of polarity of the shear
only (Cibert, 2008).

In the present paper, assuming that orientation of the bending
plane is constant along the entire length of the model, the
distribution of couples DAs–b-TMs along the nine ODPs during a
beating cycle was modeled. These distributions are highly
heterogeneous around and along the axonemal cylinder. The
active couples tend to form cluster series along the nine ODPs in
relation to sliding speed, local bending, and cylindrical location of
the ODPs.

These results confirm two things: first, that geometry could be
one of the major elements involved in the definition of the
apparent cooperativity existing between DAs and b-TMs during
the axonemal beating, and second, that this cooperativity must be
considered as adaptative because it depends on local curvature
and on location of the outer doublet pairs around the axonemal
cylinder.

2. Material, calculations, and assumptions

The program was written under ImageJ (1.37v) running on a
MacBook Pro (Intel) OS-X platform (www.rsbweb.nih.gov/ij/
download.html).

According to Gray (1955, 1958) and Gray and Hancock (1955),
traces of flagellum of a sea urchin spermatozoon (chosen as a
model) were calculated as products of an exponential envelope
and a periodic function (Cibert, 2008), whose equations are
y1¼a0(1�exp(�a1x))) and y2¼sin(w(kt�x/v)+j), respectively,
where: a0¼100, a1¼2, w¼0.8, v¼0.31, k¼8r/160,
j¼�23p/80+j0, x is the abscissa containing 200 points of
sampling of traces that range in the interval [0, 3], r the rank of the
trace in the beating cycle (Fig. 1), and 160 is the number of traces
that constitute a complete beating cycle. The abscissa x is
calculated as x¼3i/200, where i is the rank of the sampling
point ranging in the interval [0, 200]. In a periodic function the
quantities k and x/v are related to displacement of the wave train
along the longitudinal direction, as a function of time, and
describe shape of the wave train for a given moment of time,
respectively. Values of the other parameters are chosen to mimic
the beating of sea urchin spermatozoon. The length of each trace
equals 40mm. If the beating frequency of the model is 50 Hz the

interval between two images of the bending series becomes
(1/8000) s. One image out of ten is displayed along the series in
Fig. 1A and B, where j0 equals 0 and p/2, respectively (higher
ranks are identified by darker traces).

The range of local shear calculated along each of the 160 traces
is characterized by a fish-shaped envelope, in agreement with
earlier descriptions (Fig. 1C; Cibert, 2002). This plot characterizes
the P0 points as curvilinear abscissas, where relative shear of the
ODPs tends to a minimum, because of synchronous (Brokaw,
1996, 1993; Goldstein, 1976) and cumulative (Cibert, 2001, 2002,
2003) sliding of the ODPs. Consequently, the wave train moving
along the axoneme delineates a series of P0–P0 modules along the
model (Cibert, 2002), and shearing of the ODPs along the entire
length of the axoneme occurs irrespective of local curvature
(Cibert, 2002, 2008).

Fig. 2 shows the cross-section of the axoneme that we have
used in this study, and the magnitude of compression and dilation

Fig. 1. The modeled wave train. (A) and (B) show 160 calculated flagellar traces

where the difference between phases of the periodic functions equal 0 and p/2,

respectively; one trace in 10 is represented. (C) Local extrema of the sum of the

local shear along the 160 traces is clearly fish-shaped (Cibert, 2002). The five

abscissas numbered 1–5 are the sites where conformations of the dynein arms

were calculated; the abscissas defined as �1, �2, �3, +1, +2, and +3 refer to

abscissa #5 and were used to describe the relation between local sliding speed

and local sum of the curvature through the fixed P0 point/segment. In (A)–(C)

the ordinates are represented according to an arbitrary unit ranging between �1

and +1.
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