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a b s t r a c t

Transient dynamics of signal transduction pathways play an important role in many biological

processes, including cell differentiation, apoptosis, metabolism and DNA damage response. Recent

examples of quantitative methods to characterize transient signals include transient metabolic control

coefficients and finite time Lyapunov exponents. In our work we compare these quantitative methods

to characterize transient phenomena and specifically discuss their predictive power for three examples.

We focus on the identification of thresholds that separate different transient dynamic behaviors. Our

investigation leads to the following results: The spectrum of the finite-time Lyapunov exponents

unambiguously and reliably identifies putative thresholds in transient dynamics. Metabolic control

coefficients do not reliably detect all thresholds and suffer from false positives.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of cellular processes can be classified into steady
state and transient dynamics, whereby we include biochemical
oscillations with constant amplitude as examples of steady state
processes. While steady state processes are most important in
metabolic systems (Heinrich and Schuster, 1996), transient
dynamics play an important role in cell communication (Aldridge
et al., 2006; Bolouri and Davidson, 2003; Kao et al., 2001; Cheong
et al., 2005; Hao et al., 2003; Sasagawa et al., 2005).

Transient dynamics describe the transition from some initial
state of the system into a steady state. For an understanding of
signaling pathways and their targets transient dynamics are often
more important than steady state dynamics as demonstrated by
the following examples: Aldridge et al. (2006) have established a
mathematical model which describes the regulation of active
caspase 3 dynamics in apoptosis. The temporal duration depends
on the initial condition (concentration) of the protein xiap. Bolouri
and Davidson (2003) have shown by mathematical modeling that
genes are activated successively in a regulatory network cascade,
long before steady states are attained. The EGFR stimulated MAPK
cascade in the PC12 cell line shows a transient activation of ERK
with a peak at 5 min and a return to its basal level after 30 min,
which leads to cellular proliferation (Kao et al., 2001). Using
mathematical modeling Cheong et al. (2005) have predicted that

the dynamic profile of the IKK signal must transiently peak at all
TNFa doses in order to generate the observed NFkB activity which
they could experimentally validate.

Aldridge et al. have employed direct finite-time Lyapunov
exponents to identify domains in the transient dynamics of high
sensitivity to initial conditions (Aldridge et al., 2006). These
separatrices delineate regions with different transient dynamics
and can be considered as a threshold. Furthermore, for the
activation of a signaling pathway often threshold concentrations
of proteins are required to prevent the unintentional activation of
signaling pathways through random fluctuations.

The relevance of thresholds in biology is demonstrated by a large
number of publications about ultrasensitive responses ranging from
Goldbeter and Koshland (1981) and Ferrell (1996) to the recent
work of Buchler and Cross (2009). Ferrell has concluded, on the
basis of experimental data, that the MAPK cascade is optimized to
convert a graded input into a switch-like output (Ferrell, 1996).
Ultrasensitive responses leading to sigmoidal stimulus-response
curves have been related to activation thresholds of biochemical
networks in the literature (Goldbeter and Koshland, 1981; Ferrell
and Machleder, 1998; Nash et al., 2001; Bhalla et al., 2002; Huang
and Ferrell, 1996; Bentele et al., 2004; Gunarwardena, 2005; Salazar
and Höfer, 2007). Experimental measurements in networks with
multiple phosphorylations have shown that the stimulus has to
exceed a threshold concentration to activate downstream events
(Buchler and Cross, 2009; Ferrell and Machleder, 1998; Nash et al.,
2001; Bhalla et al., 2002). Mathematical models for the MAPK
cascade with dual phosphorylation (Huang and Ferrell, 1996) and
general models for multisite phosphorylations (Salazar and Höfer,
2007) have shown that multisite phosphorylation give rise to more
threshold like responses than single site phosphorylation. So far,
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however, mathematical modeling has focused on network proper-
ties leading to sigmoidal stimulus-response curves in the steady
state dynamics.

In small networks, stimulus-response curves of the transient
and steady dynamics can be studied in detail, leading to the
identification of putative thresholds. In larger biochemical net-
works the identification of putative thresholds would become very
time consuming because the network components could show
sigmoidal-stimulus response curves during different time intervals.
Therefore quantitative measures to identify putative thresholds in
transient dynamics are required. They should be designed such
that an inspection of trajectories is not necessary, i.e. they should
deliver initial conditions (concentrations) of proteins and respec-
tive time intervals where a response shows a threshold. Recent
examples of quantitative methods to characterize transient signals
include transient metabolic control coefficients (MCC) (Ingalls and
Sauro, 2003; Hornberg et al., 2005) and finite time Lyapunov
exponents (FTL) (Aldridge et al., 2006). We here focus on system
structures that generate thresholds in transient dynamics and
investigate quantitative measures to identify such thresholds.

The outline of this paper is as follows. Following an introduc-
tion to MCCs and FTLs, we define thresholds in cellular signaling,
discuss their properties and argue for the need of quantitative
measures to identify them in transient dynamics. We then study
two model structures that can generate thresholds in their
transient response and we compare quantitative measures to
identify thresholds in the transient dynamics. We first extend the
analysis of thresholds by FTLs in an apoptosis decision network
(Aldridge et al., 2006) by calculating the three largest FTLs and the
MCCs. Next, we study a gene transcription network as an
alternative model structure to generate thresholds in transient
dynamics. Our analysis of the gene transcription network has
motivated us to analytically quantify the threshold of a Hill
equation and to discuss an alternative measure which combines
properties of the FTLs and the MCCs.

Finally the results of our comparative study will lead us to an
evaluation of the investigated quantitative measures regarding
their ability to identify thresholds in transient signaling.

2. Quantitative measures to characterize transient dynamics

Metabolic control coefficients (MCC) measure the relative
response of a state variable xi, with respect to the relative
perturbation by state variable xj. They are a standard quantitative
measure in sensitivity analysis (Heinrich and Schuster, 1996).
MCCs can also be calculated for finite times as described in Ingalls
and Sauro (2003) and Hornberg et al. (2005). They are defined by

CðxiðtÞ; xjð0ÞÞ ¼
@ logxiðtÞ

@ logxjð0Þ
: ð1Þ

Comparing the influence of a perturbation at t=0 on different state
variables at t40 it is useful to consider relative changes of state
variables because the values of different state variables can have
different orders of magnitude. Thus control coefficients for different
pairs (i, j) can be compared. In general one uses the same percentaged
perturbation for all xj(0) resulting in the same denominator for all
C(xi(t),xj(0)). To perturb simultaneously initial conditions of several
state variables, global approaches have to be applied (Zhang and
Rundell, 2006), which is not the focus of this work.

The MCC in Eq. (1) is also called ‘‘concentration control
coefficient’’. Replacing in the denominator the initial condition
xj(0) by a parameter, for example a reaction constant, leads to
another type of concentration control coefficient. The concentration
control coefficients can be calculated for the transient dynamics as
well as in the steady state. In addition, flux control coefficients have

been introduced to quantify the control of the flux of a metabolic
system in the steady state (Heinrich and Schuster, 1996).

Lyapunov exponents measure the exponential divergence
between a reference trajectory and d orthogonal perturbations
to the trajectory, where d is the dimension of the related
mathematical model which is equal to the number of state
variables (Eckmann and Ruelle, 1985). Finite time Lyapunov
exponents (FTL) have been introduced to quantify dynamical
instabilities over a finite interval of time (Grassberger et al., 1988;
Ott, 1994; Abarbanel, 1996; Haller, 2001). They depend on time
and on the initial conditions of the dynamical system. The FTLs
liðt; xð0ÞÞ, i=1,y,d can be calculated from the numerical solution
of the ordinary differential equations (ODE) for a finite time t and
initial state x(0) at t=0:

_x ¼ f ðxÞ _u ¼
df

dx
u;

liðt; xð0ÞÞ ¼
1

2t
log Li uT � u

� �� �
; ð2Þ

where _x denotes a system of ODEs, and _u a matrix differential
equation for d initially orthonormal perturbation vectors which
are the columns of the matrix u, and uT being the transpose of u

and Liðu
T � uÞ denoting the eigenvalues of uT � u. Alternatively, li

can be calculated directly from differences between trajectories
and initially perturbed trajectories (Aldridge et al., 2006).

The number of Lyapunov exponents is equal to d and the whole
set of them is also called the Lyapunov spectrum. The largest
Lyapunov exponent quantifies the exponential divergence of the
most unstable direction and the lower Lyapunov exponents quantify
the exponential divergence in the d�1 orthogonal directions.

Comparing the definitions of MCC and FTL the differences can be
summarized as follows: The FTLs identify the most unstable
direction of the state space and the stability in all orthogonal
directions on the basis of absolute distances between the trajectory
and perturbed trajectories. The MCCs measure the response-
perturbation ratio on the basis of relative changes of state variables.

Recent experimental results show that biological responses
can be absolute or relative: In EGF stimulated H1299 cells the
absolute change of ERK2 response varies in different cells but the
relative response is the same in different cells (Cohen-Saidon
et al., 2009). An absolute response mechanism seems to occur in
some bacterial systems (Shinar et al., 2007).

In our study we have numerically calculated the MCC
according to Eq. (1) and the FTL according to Eq. (2). We have
coded the calculations in Matlab (The MathWorks Inc, 2007). For
the eigenvalues in Eq. (2) we have also coded an RQ decomposi-
tion but our results do not depend on it. The Matlab code can be
obtained from the authors upon request.

3. Thresholds in transient dynamics

Cells respond to changes in protein concentrations, which
suggests that concentration changes should be the basis for a
definition of thresholds in cellular signaling. As it has been
discussed in the introduction sigmoidal stimulus-response curves
have been related to activation thresholds of biochemical networks
(Goldbeter and Koshland, 1981; Ferrell and Machleder, 1998; Nash
et al., 2001; Bhalla et al., 2002; Huang and Ferrell, 1996; Bentele
et al., 2004; Gunarwardena, 2005; Salazar and Höfer, 2007). So far,
experimental and modeling efforts have focused on sigmoidal
stimulus-response curves in the steady state.

We suggest that a threshold value of a sigmoidal stimulus
response curve can be defined by the stimulus that corresponds to
the inflection point of the response curve. An alternative definition
could be based on the highest curvature of the stimulus-response
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