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a b s t r a c t

This paper presents a reduced-order model of longitudinal hovering flight dynamics for dipteran

insects. The quasi-steady wing aerodynamics model is extended by including perturbation states from

equilibrium and paired with rigid body equations of motion to create a nonlinear simulation of a

Drosophila-like insect. Frequency-based system identification tools are used to identify the transfer

functions from biologically inspired control inputs to rigid body states. Stability derivatives and a state

space linear system describing the dynamics are also identified. The vehicle control requirements are

quantified with respect to traditional human pilot handling qualities specification. The heave dynamics

are found to be decoupled from the pitch/fore/aft dynamics. The haltere-on system revealed a stabilized

system with a slow (heave) and fast subsidence mode, and a stable oscillatory mode. The haltere-off

(bare airframe) system revealed a slow (heave) and fast subsidence mode and an unstable oscillatory

mode, a modal structure in agreement with CFD studies. The analysis indicates that passive

aerodynamic mechanisms contribute to stability, which may help explain how insects are able to

achieve stable locomotion on a very small computational budget.

& 2010 Published by Elsevier Ltd.

1. Introduction

In recent years, researchers have made much progress into the
task of understanding the aerodynamic basis for and the control
architecture involved in flapping insect flight, in particular the
fruit fly Drosophila melanogaster. Advances in the field of flapping
wing aerodynamics have largely relied on the ability of research-
ers to make detailed observations of the insects’ flapping behavior.
Early observations of tethered Drosophila by Vogel (1967) began to
observe variations in certain ‘‘stroke parameters’’ defining wing
kinematic patterns and variations in wing contour. Several years
later, Weis-Fogh (1972) used Vogel’s observations in the devel-
opment of the ‘‘quasi-steady’’ postulate first introduced by
Osborne (1951). Briefly, this approach asserts that the instanta-
neous lift and drag forces of an insect could be represented by
drawing analogy to a similar wing translating at the same angle of
attack and the same (steady) velocity, an analogy whose theory
continues to find application in modern research.

The quasi-steady approximation has been extensively used
as a foundation by researchers beginning with Ellington
and Dickinson to develop the aerodynamic theory used in
contemporary understanding and prediction of insect flight.
A major use of the theory is in the prediction of baseline forces
in order to elucidate the contributions of additional aerodynamic

mechanisms, predominantly unsteady effects (Dickinson and
Gotz, 1999). The quasi-steady concept has been applied to
determine aerodynamic contributions by mechanisms such as
‘‘clap and fling’’ movements (Spedding and Maxworthy, 1986) and
dynamic stall (Dickinson et al., 1999). Even so, the chief
contribution of quasi-steady theory to the field of insect flight
understanding has been as a means to reduce kinematic and force
data taken from both tethered and in-flight recordings of wing
kinematics, allowing reduction of in-flight data to nondimen-
sional coefficients that may be interpreted from the perspective of
more traditional aerodynamic mechanisms (Fry et al., 2003).

Despite the widespread usage of the quasi-steady model and
the information that it can provide regarding insect aerody-
namics, the theory is normally applied as a model operating at a
single point. Placing the model in the context of perturbations
from that operating point provides insight into the fundamental
dynamic behavior, which can then be used to understand the
sensing and feedback requirements for stable flight. These are
precisely the goals of this paper.

Several attempts have been made to quantify the dynamic
modes of an insect. Taylor and Thomas (2003a–c) used measure-
ments taken of tethered locusts in forward flight to measure
the locusts’ forces in response to body pitch angle and velocity
sweeps, and used these experimental derivatives to identify
a stable subsidence mode, a stable oscillatory mode, and an
unstable divergence mode. Sun and Xiong (2005) used perturba-
tions in longitudinal state variables in a computational fluid
dynamics study of bumblebee aerodynamic forces in hover to find
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numeric estimates of its aerodynamic stability derivatives, finding
a stable fast subsidence mode, a stable slow subsidence mode, and
an unstable oscillatory mode.

This study will examine the implication of passive aerodynamic
stability mechanisms associated with flapping flight. Euler rigid
body dynamics are paired with quasi-steady aerodynamics model-
ing that includes effects of perturbations from the hover equili-
brium. Results are based on analysis of the analytical equations as
well as frequency-based system identification of the nonlinear
simulation. The objective is a linearized state-space model valid for
small motions about hover that may be used to understand sensing
and feedback requirements (and directly provide modal insight as
in Taylor and Sun et al.). Such a model is derived under the
fundamental assumption that it is the averaged forces and
moments over the wingstroke that are important up to timescales
of the rigid body dynamics. Though the example insect used in the
simulation uses Drosophila-like parameters, the theoretical ap-
proach is derived for a general insect exhibiting such a timescale
separation in hover and the qualitative results are applicable to the
translational effects of dipteran flapping wing flight.

The organization of the paper is as follows. Section 2
introduces the kinematics, control inputs, aerodynamics model,
and aerodynamics averaging. Section 3 uses the rigid body
equations of motion to compute trim solutions for hover and
extends the quasi-steady model to include perturbations from the
hover point, while Section 4 describes a nonlinear simulation
environment encoding the perturbation velocities concept and
describes the system identification procedure. Section 5 investi-
gates the handling qualities of the system, the properties and
accuracy of the heave and longitudinal dynamics, and compares
the haltere-on dynamics to bare-airframe identification. Supple-
mentary Bode plots of measured and identified transfer functions
are provided in an Appendix.

2. Background

In this section, a review of quasi-steady aerodynamic theory
and the governing equations for the analysis and simulation is
presented. For a more complete treatment of insect aerodynamics,
refer to Sane (2003).

2.1. Kinematics

The description of the insect flapping motion requires a family
of axes centered at the insect wing hinge. Approximating the
wings as rigid bodies, measured insect kinematics exhibit a
roughly planar flap motion which will be represented using 2–3–2
Euler angles. Define by reference to Fig. 1a a set of stability axes
S ¼ fŝx; ŝy; ŝzg passing through the insect center of mass G, the
stroke plane angle b as the angle about the pitch axis to an
idealized planar stroke motion, and a coordinate axes set aligned
with this plane the stroke plane axes P ¼ fp̂x; p̂y; p̂zg. Define
R¼ fr̂ x; r̂ y; r̂ zg a set of axes that move along with the right wing,
with r̂ z ¼ p̂z and r̂ y to extend toward the wing tip as in Fig. 1 b.
Similarly, define L¼ fl̂x; l̂y; l̂zg for the left wing, with l̂y extending
inboard along the left wing spanline. The additional definition of
the geometric angle with respect to the stroke plane as ag

provides the notation necessary to describe the orientation of two
rigid wings at an instant in time.

For a flapping insect in or near hover, the flap angle fr

undergoes a harmonic motion represented as a sinusoid

frðtÞ ¼ �Fr cosð2pfrtÞþfoff ;r; ð1Þ

where Fr gives the amplitude of each wingstroke, foff ;r the
deviation of the point about which the wing oscillates, and fr the

right wing flap frequency. Since this study addresses longitudinal
motion, we will describe the behavior of the right wing motion
and assume the complementary behavior in the left wing frame
by dropping the r subscript. The geometric angle of attack ag

exhibits a harmonic motion roughly resembling a modified square
wave, which allows the advancing and retreating strokes to both
share a positive angle of attack.

2.2. Control parameters

As postulated by Vogel (1967) and later quantified experi-
mentally by Fry et al. (2003), insects modulate the time forces and
moments applied to wingstrokes by modification of several
wingstroke parameters. Parameter variations remain remarkably
small, even for aggressive maneuvers such as fast 901 collision
avoidance maneuvers known as saccades (Fry et al., 2003), but are
nonetheless fundamental for the control of the insect. The control
inputs considered in this study are the biologically motivated
choice of flap frequency f in Hz, the flap amplitude F as defined
in Section 2.1, stroke plane angle b, and the mean position
(center) of wing oscillation foff . In addition to the mathematical
definitions in Section 2.1, several control parameters may be seen
graphically in Fig. 2.

2.3. Aerodynamics

A variety of effects, predominantly unsteady, are known to be
active during an insect’s flight. A thorough treatment of these
effects is outside the scope of this paper and may be found in
Ansari et al. (2006). Instead, this treatment will review the largest
contribution to in-flight insect forces: ‘‘translational’’ lift.

2.3.1. Translational lift and drag

Wing ‘‘translational lift’’ is the largest component (approxi-
mately 65–85%) of an insect’s lift production in hover and the
most straightforward of the lift mechanisms known to be active,
but includes a number of unsteady effects via experimental
coefficients. The translational component of insect lift can be
represented using (Ellington, 1984b)

LðtÞ ¼ 1
2rSjutðtÞj

2 r̂
2
2CL½aðtÞ�; ð2Þ

where the instantaneous lift force L is written as a function of the
air density r, the wing area S, tip velocity ut, nondimensional
second moment of area r̂

2
2, and an experimentally determined lift

curve slope (Sane and Dickinson, 2002)

CL½aðtÞ� ¼ 0:225þ1:58 sinð2:13ag�7:2Þ: ð3Þ

The second moment of area may be defined in terms of the
normalized chord ĉ ¼ 1=2 c=R and normalized radius r̂ ¼ r=R as
r̂

2
2 ¼

R 1
0 ĉ r̂

2
dr̂ (Ellington, 1984a).

Fig. 1. Axes and angle definitions. (a) Stroke plane axes/angle b, body hovering

angle x. (b) Stroke angle fr- and R�axes.
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