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a b s t r a c t

A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations

governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and

analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive

convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is

developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding

reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or

fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After

Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our

theory for special cases. Model analysis indicates that at the early stages of the transport process,

biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer

process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by

finite difference differentiation, indicates that experimental biologists should use full space–time

profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy

experiments to extract meaningful physiological information from the protocol. Such a small time

frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis

highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed

model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in

normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems,

kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical

simulators of biological mass transport processes in vivo.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Systems biology focuses on the systematic study of the
interactions between different components of a biological system
and how these interactions control the function and behavior of
the biosystem (Snoep and Westerhoff, 2005). Some consider
systems biology as an integration paradigm (instead of the so-
called reductionist paradigm) that requires rigorous ways of
thinking about integration programs in the analysis of biological
systems (Sauer et al., 2007). Others view systems biology as a
methodology consisting of theory, mathematical/computational
modeling to formulate specific testable hypotheses about biolo-
gical systems, experimental validation of the model or theory, and
then using the newly gathered data to refine the model or theory
(Kholodenko et al., 2005).

Biological mass transport phenomena are at the core of the
systematic study of biosystems. They have key roles in biological

processes that take place in different units of bioenvironmental
systems across structural scales from the cellular domain (e.g. cell
division, cell motility, axonal growth, etc.) to regional levels (e.g.
endemic, epidemic, epizootic, pandemic, etc.). They determine the
behavior and function of biosystems and regulate the interactions
between drugs and recipient targets (Sadegh Zadeh et al., 2007a).
Biotransport phenomena are crucial elements in the design and
use of biosensors and are critical in the removal of toxins from the
blood (Truskey et al., 2005). They also play critical roles in the
remediation of impaired water bodies (sources of water borne
diseases) and bioremediation and phytoremediation of contami-
nated lands. In bioenvironmental systems, transport processes are
important to understand, simulate, predict, analyze, and prevent
point and non-point source pollution. They regulate the delivery
of nutrients and water to plants and control the movement of
pesticides, viral, and bacterial agents through the landscape
(Sadegh Zadeh, 2006; Sadegh Zadeh et al., 2007b).

One of the goals of system biology is to develop cellular scale
process-based mathematical models to study, understand, pre-
dict, and control biological mass transfer processes. Despite a
growing body of analysis of biotransport processes (Berk et al.,
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1997; Broady, 2000, 2002; Coscoy et al., 2007; Kaufman and Jain,
1990; Lubkin and Wan, 2006; Maly, 2002; Misteli et al., 2000;
Phair and Misteli, 2000; Stenoien et al., 2001; Tardy et al., 1995;
Tsay and Jacobsen, 1991; Zhang et al., 2008), accurate prediction
of biomolecular and cellular dynamics remains a major challenge
in real heterogeneous and complex biological systems which
exhibit remarkable spatial and temporal variability. The varia-
bility stems from local scale heterogeneity of the biological
systems, diffusion coefficient, and localized equilibrium reaction
rate parameters. The implication of this viewpoint is that the
mathematics of biomacromolecule transport and binding may be
better described using the random process theory. This kind of
treatment, which is termed stochastic modeling, may lead to a
comprehensive insight into the dynamics of biomacromolecules
in systems biology perspective. However, this approach is beyond
the scope of this paper and will be addressed in future
contributions. Instead, we will adapt a deterministic approach
with multiple-binding kinetics, to model biomolecular binding
reactions, combined with diffusion and circular geometries.
Considering multiple binding kinetics is crucial in analyzing
cellular and biomolecular dynamics in vivo, as the previous
studies have assumed that biomolecular affinity to different
binding sites inside highly heterogeneous and complex biological
systems is similar (the same on and off rate constants for all
different binding sites). A close-to-real world approach would be
considering different association and dissociation (on and off) rate
constants for different binding sites inside biosystem under study.
The circular geometry is important for analyzing the results of
fluorescence microscopy experiments (for instance Fluorescence
Recovery After Photobleaching (FRAP)) where a circular laser
beam is used by experimental biologists to locally inactivate
fluorophores (see Berk et al., 1997; Bretscher and Rafe, 1975;
Dunder et al., 2002; Dundr and Misteli, 2002; Ediden et al., 1976;
Kalaidzidis, 2008; Lever et al., 2000; Liebman and Entine, 1974;
Poo and Cone, 1974; Schlessinger et al., 1976; Tsibidis and Ripoll,
2008; Sadegh Zadeh et al., 2007c, 2007d for a thorough
discussion). The FRAP protocol is used to study the mobility and
binding of biomacromolecules in different units of organisms.
Mathematical modeling of the relevant biotransport processes
can guide experimental biologists to identify when to sample the
experiments for maximum sensitivity, to evaluate the asymptotic
behavior of the biological systems, to analyze targeted drug
delivery in normal and cancerous tissues, to understand intra-
membrane ligand diffusion, to study motor-driven axonal trans-
port in normal and abnormal nervous systems (Sadegh Zadeh and
Shah, 2010), to simulate kinetics of diffusion-controlled reactions
between enzyme and substrate (Chou, 1976; Chou and Forsen,
1980; Chou and Jiang, 1974; Chou et al., 1980, 1981; Chou and
Zhou, 1982; Zhou et al., 1983, 1981; Zhou and Zhong, 1982), and
to verify numerical codes in molecular biology.

Assuming a Gaussian laser beam profile and neglecting binding
interactions in the FRAP experiment, Axelrod et al. (1976)
presented a closed form solution for pure isotropic diffusion and
pure advection of biomolecules in cells. Soumpasis (1983)
simplified the solution by assuming a uniform circular laser beam
profile but also neglected biomolecular binding reactions. He also
suggested that movement of some biomacromolecules may be
better described by two diffusing transported entities, a slow and
a fast population (mobile-immobile concept) (Soumpasis, 1983).
Sprague et al. (2006, 2004) developed semi-analytic solutions for
biomolecular diffusion–reaction, but the solutions are in Laplace
space and requires numerical inversion to return to real time.
Some real space–time solutions for transport with one binding
site (or two transport regions) have been developed in other
branches of science and engineering (Fusco and Manganaro, 1996;
Goldstein, 1951; Lapidus and Amundson, 1952; Lindstrom and

Narasimhan, 1973; McNabb, 1985; Uflyand, 1988; Walker, 1987)
and may be adaptable to cellular processes. However, they
generally consider a linear geometry that differs from the radial
nature of the FRAP experiments. The closed form solution
presented by Hill (1981) and extended by Lee and Hill (1982)
for a system of two reaction–diffusion equations, and the solution
of Montas (2003) for a three-equation system are also possibilities
for representing FRAP dynamics, except for the geometry of the
system. A solution presented recently by Lele et al. (2004),
properly respects bleach spot geometry, assumes that the bleach
spot is at the center of a circular cell, and neglects possible
transport of fluorophores across the cell membrane. However, it
has the form of a Fourier–Bessel series that can be demanding to
evaluate due to the Gibbs phenomenon (ringing artifacts). This
may make the application of this solution to parameter estima-
tion less desirable if bleach spot walls (where Gibbs ringing is
expected to concentrate) are sensitive response points. Kang and
Kenworthy (2008) present explicit analytic solutions for FRAP
where the bound complex can diffuse under uniform circular and/
or Gaussian laser profiles. Their solutions, however, use only
single-binding kinetics. Using a reaction and diffusion model,
Dushek et al. (2008) provide theoretical descriptions of how and
when Fluorescence Recovery After Photobleaching (FRAP) experi-
ments can be used to quantify binding reaction rates.

The goal of this paper is to develop and analyze a class of closed
form analytic solutions for a system of n+1 coupled partial
differential equations governing biomacromolecule mass transport
and binding in living organisms during the course of a fluorescence
microscopy experiment. The plan of the paper is as follow: In
Section 2 we present the system of coupled partial differential
equations. Section 3 presents the strategy used to obtain exact
solutions of the system. Explicit forms of the solutions, for up to
three binding reactions, are presented in Section 4, followed by
analysis of the behavior of the solution for small and large times in
Section 5. Sensitivity equations are developed in Section 6 and used
to identify strong control points and to evaluate the effects of
averaging on parameter sensitivity. We end the article with a
summary and concluding remarks in Section 7.

2. Biomolecular diffusion–reaction equation

The proposed system of partial differential equations govern-
ing biomolecular mobility and binding inside living organisms
and the corresponding analytical solutions are based on the
following assumptions (Sadegh Zadeh, 2006; Sadegh Zadeh et al.,
2006): (1) Two-dimensional diffusion takes place in the plane of
focus during the FRAP experiment. This is a legitimate assumption
when the bleaching area creates a cylindrical path through the
cell, which is the case for a circular bleach spot with reasonable
spot size. (2) The Peclet number (P ¼ Lv/D, where v is velocity and
L is a characteristic length) is small such that advection is not a
significant mass transfer process, which is the case in nuclear
protein transport and for DNA-binding proteins. (3) The effect of
heating (caused by the absorption of the laser beam by the sample
and fluorophore) on biomacromolecule mobility is negligible
(Kaufman and Jain, 1990). (4) The bound complex is relatively
immobile. (5) The biological system is in the state of local
equilibrium before photobleaching and it remains so over the
time course of the FRAP experiment.

Denoting concentration of free biomacromolecule by F,
number of binding sites by n, concentration of the i th vacant
binding site by Si, concentration of the i th bound complex by Ci,
free biomolecule-vacant binding site association rate constant for
site i by Kai, and dissociation rate constant for site i by Kdi;
we propose a multiple-binding state equation to describe
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