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a b s t r a c t

We propose a new mechanism of interactions between game-theoretical agents in which the weights of

the connections between interacting individuals are dynamical, payoff-dependent variables. Their

evolution depends on the difference between the payoff of the agents from a given type of encounter

and their average payoff. The mechanism is studied in the frame of two models: agents distributed on a

random graph, and a mean field model. Symmetric and asymmetric connections between the agents are

introduced. Long time behavior of both systems is discussed for the Prisoner’s Dilemma and the Snow

Drift games.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In mathematical modeling of human societies the evolution of
behaviors (actions) of the interacting individuals and of the
structure of the mutual interactions should be taken into account.
In real world the acceptance and refusal of entering in interactions
with preferential partners is a common phenomenon. Real world
networks change in time. People may tend to regulate the
interpersonal interactions, connections with the others, on the
basis of comparison between the results of the interactions and
some averaged, local or global patterns. The players can change
their actions and optimize the strength of relations with the
others. In particular the players can change the structure of the
links with the other players, breaking links and creating the new
ones.

The models of populations of agents with interactions
described by social dilemma games on spatial static regular
lattices were introduced by Nowak and May (1992), and then
studied by many authors, and extended to general spatial
networks and structured populations. We refer to Szabo and Fath
(2007), and Gross and Blasius (2008) for recent reviews on
evolutionary games on graphs and on adaptive coevolutionary
networks.

The coevolution of network topology and strategy dynamics
has been considered by many authors. Various concepts of the
coevolving network structure and strategy distribution have been
introduced, e.g. via assortative selection of interaction partners
(cf. e.g. Ashlock et al., 1996; Ebel and Bornholdt, 2002; Eguiluz
et al., 2005; Zimmermann and Eguiluz, 2005; Poncela et al., 2007,

and references cited therein), volunteering participation (cf. e.g.
Hauert and Szabo, 2003, and references cited therein), via random
or intentional rewiring procedures (e.g. addition and/or removal
of nodes, cf. e.g. Zimmermann et al., 2004), via introduction of
different behaviors towards the adverse ties (Van Segbroeck et al.,
2008, 2009) and by introducing active linking and agent-based
linking dynamics (Pachecho et al., 2006a, b; Traulsen et al., 2008).
In particular Pachecho et al. (2006a, b) considered a population
model in which the agents seek new connections at different
rates, and allow the established connections to last for different
amount of time. In the limit in which the dynamics of the network
is much faster than the evolution of strategies the authors in
particular show that the Prisoner’s Dilemma (PD) game can be
transformed to a coordination game—the transformation changes
the rules of the game and explains the emergence of cooperation
in the considered model. Pachecho et al. (2008) studied the
systems with repeated interactions which last as long as the link
between the players is present, and obtained analytical conditions
for evolutionary stability under direct reciprocity. In comparison
with the similar model on static graph (Ohtsuki and Nowak,
2007), the cooperation is facilitated by the active linking
dynamics (in both cases the cooperation is promoted if the links
last long enough, and the incentive to create new links is not too
high).

We propose an approach, based on another idea of changing
the connectivity structure in the system. We assume that the
players dynamically change the connection weights, using update
rules which reflect the tendency to increase more profitable
connections, and to weaken the disadvantageous ones in a
continuous way. The weights can be symmetric or asymmetric.
In the first case the value of the connection is the same for both
players, whereas in the second this value can be different for each
of them.
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We propose two types of models: finite population on a
network and continuous population in the mean field approxima-
tion. In the model of agents on network the agents are located on a
random graph. Each agent is connected with some other agents
(neighbors). Each connection has a weight, which changes
according to preferences of the agent. The preferences of a player
are measured by the difference between its payoff from the
considered connection and an averaged payoff. Evolution of the
model occurs by a birth–death (BD) mechanism. In the mean field
model the weights of the connections are time-dependent
functions which evolve according to the rules of evolutionary
game theory. Solutions of the resulting systems of differential
equations are discussed. The asymptotic equilibrium states are
investigated. For both models we study temporal evolution of the
strategies and the weights distribution for two types of two-
person games describing the standard social dilemmas: the
Prisoner’s Dilemma game and the Snow Drift (SD) game.

2. Model on graph

The population consists of N agents, identified with the nodes
of a random connected graph with a degree of k. The edges are
described by dynamically changing connection weights: we
denote oijðtÞ—the connection weight between the nodes i and j

at time t. The connection weights can be symmetric: oijðtÞ �

ojiðtÞ; or asymmetric, when oijðtÞ and ojiðtÞ are in general
different. The agents interact pairwise, playing a two-person
symmetric game with the payoff matrix

(abbreviated in the description of figures by ½a;b; c; d�) with their
neighbors, using the strategy C or D, and receive payoffs which are
products of the payoffs from the above payoff matrix, and the
relevant connection weights. We shall refer to such products as to
the effective payoffs. In our paper C stands for cooperation and D
for defection in the considered below social dilemma games,
although in general the proposed scheme is valid for any two-
person game, and can be generalized for other types of the games.

Initially the agent’s strategies are allocated randomly. The
initial connection weights are allocated in such a way that the
assumed order of the graph is obtained, and typically are the same
for all connected players.

The evolution of the network takes place in discrete time steps.
At each time step first the weights of all the connections are
updated, then the strategy of one of the agents and its weights are
updated.

The updating rules will reflect the fact that each player tends to
increase the intensity of interactions (the connection weights in
our model) with those opponents with whom the results of the
interactions, i.e. the effective payoffs are higher than the average
payoff from all the interactions of the player. The increase is
proportional to the difference between both types of payoffs. The
rules of the weights updating in the symmetric and asymmetric
models are, respectively,

oijðt þ 1Þ ¼ oijðtÞ þoijðtÞð1�oijðtÞÞðDij þ DjiÞ=2M (1)

oijðt þ 1Þ ¼ oijðtÞ þoijðtÞð1�oijðtÞÞDij=M (2)

where Dij is the difference between the effective payoff of the
agent in node i from the interaction with that in j (given by the

product of oij and the relevant entry of the payoff matrix
introduced above), and the mean payoff of the agent in i over
the neighborhood of i. Formally Dij is defined as follows. Let dij

denote the payoff of the i player from the interaction with the j

player, calculated from the relevant entry of the initial payoff
matrix (1). Let Ni denote the number of the i-th neighbors, i.e. the
nodes connected to i. Then DijðtÞ ¼ oijðtÞdij � ð1=NiÞ

Pl¼Ni

l¼1 oilðtÞdil:

M denotes the maximum of the payoff matrix.
The product oijð1�oijÞ in (1) and (2) reduces the speed of the

evolution of the relevant weight when it approaches its extremal
values (here normalized to zero and unity). In other words, the
ties which are close to their extremal values are harder to change.

Strategy updating for both the symmetric and antisymmetric
weight models is based on the BD method (Ohtsuki and Nowak,
2006). We consider two types of updates, which we call no
inheritance and inheritance updates. In the former we draw a
player (parent), with probability proportional to its total payoff.
Then we draw randomly one of its neighbors (descendant), and
allocate to it the parent’s strategy. The weights of the descendant
with its neighbors are set to their initial values. In the latter the
strategy is inherited as above; the connection weights between
the neighbors and the descendant are calculated from the
neighbor’s and the parent mean values. Each player can have
two, in general different, mean values of the connection weights:
one calculated from the interactions with partners who play C and
one with those who play D. In the inheritance symmetric model
the weights neighbors–descendant are equal to the relevant mean
values of the parent. In the inheritance asymmetric model the
weights descendant–neighbors are equal to the mean values of
the parent’s weights, the weights neighbors–descendant are for
each neighbor equal to the relevant mean values of the neighbor’s
weights.

The proposed model belongs to the class of the coevolutionary
models with two characteristic time scales: the first one
characterizes the frequency of strategy updates, the second one
describes the frequency of changes of the weights. In many
biological applications it has been assumed that the time scale of
the interactions between the individuals is much shorter than that
of the time scale of the selection processes. The dependence of the
results, in particular of the maintenance of coordination in the
long run, on the scaling of these two processes was studied by
various authors. In particular Santos et al. (2006) show that for a
given average connectivity of the population, there is a critical
value of the ratio of the time scale associated with the evolution of
strategies to the network connectivity structure, above which the
cooperation is maintained in the system. The problem of time
scales for different processes in the coevolutionary models was
also considered e.g. by Pachecho et al. (2006a, b) and Roca et al.
(2006). Our analysis is restricted to the situations in which the
characteristic time scale of the strategy updating is much bigger
than that of the connection updating.

3. Mean field model

We assume the evolutionary scenario in which each agent
interacts with the other agents through a random pairwise
matching, playing at each instant of time a two-person symmetric
game with the payoff matrix ½ac

b
d�.

Let m ¼ mðtÞ denote the frequency of agents playing C in the
whole population. We introduce oFS � oFSðtÞ—the weight of the
connection between the agent playing strategy F and that playing
S and UFS the effective payoff of the F-agent from the interaction
with the S-agent, F; S 2 fC;Dg:

UCC ¼ aoCC ; UCD ¼ boCD; UDC ¼ coDC ; UDD ¼ doDD (3)
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