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a b s t r a c t

The problem of reliability of the dynamics in biological regulatory networks is studied in the framework

of a generalized Boolean network model with continuous timing and noise. Using well-known artificial

genetic networks such as the repressilator, we discuss concepts of reliability of rhythmic attractors. In a

simple evolution process we investigate how overall network structure affects the reliability of the

dynamics. In the course of the evolution, networks are selected for reliable dynamics. We find that most

networks can be easily evolved towards reliable functioning while preserving the original function.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Biological systems are composed of molecular components and
the interactions between these components are of an intrinsically
stochastic nature. At the same time, living cells perform their
tasks reliably, which leads to the question how reliability of a
regulatory system can be ensured despite the omnipresent
molecular fluctuations in its biochemical interactions.

Previously, this question has been investigated mainly on the
single gene or molecule species level. In particular, different
mechanisms of noise attenuation and control have been explored,
such as the relation of gene activity changes, transcription and
translation efficiency or gene redundancy (Ozbudak et al., 2002;
Raser and O’Shea, 2005; McAdams and Arkin, 1999). Apart from
these mechanisms acting on the level of the individual biochem-
ical reactions, also features of the circuitry of the reaction
networks can be identified which aid robust functioning (Barkai
and Leibler, 1997; Alon et al., 1999; von Dassow et al., 2000).
A prime example of such a qualitative feature that leads to an
increased stability of a gene’s expression level despite fluctuations
of the reactants is negative autoregulation (Becskei and Serrano,
2000). At higher levels of organization, the specific linking pattern
of the larger biochemical regulatory networks can further
contribute to the overall robustness. In comparative computa-
tional studies of several different organisms, it has been shown
that among those topologies that produce the desired functional
behavior only a small number also displays high robustness

against parameter variations. Indeed, the experimentally observed
networks rank high among these robust topologies (Kollmann
et al., 2005; Wagner, 2005a; Ma et al., 2006).

However, most current models are based on the deterministic
dynamics of differential equations. Modeling of the intrinsic noise
associated with the various processes in the network requires an
inherently stochastic modeling framework, such as stochastic
differential equations or a master equation approach (Thattai and
van Oudenaarden, 2001; Kepler and Elston, 2001; Ozbudak et al.,
2002; Rao et al., 2002). These complex modeling schemes need a
large number of parameters such as binding constants and
reaction rates and can only be conducted for well-known systems
or simple engineered circuits. For generic investigations of such
systems, coarse-grained modeling schemes have been devised
that focus on network features instead of the specifics of the
reactions involved (Bornholdt, 2005).

To incorporate the effects of molecular fluctuations into
discrete models, a commonly used approach is to allow random
flips of the node states. Several biological networks have been
investigated in this framework and a robust functioning of the
core topologies has been identified (Albert and Othmer, 2003; Li
et al., 2004; Davidich and Bornholdt, 2008). However, for
biological systems, the perturbation by node state flips appears
to be an unrealistic type of noise: in real organisms, concentra-
tions and timings fluctuate, while the qualitative state of a gene is
often quite stable. A more realistic form of fluctuations than
macroscopic (state flip) noise should allow for microscopic
fluctuations. This can be implemented in terms of fluctuating
timing of switching events (Klemm and Bornholdt, 2005b; Chaves
et al., 2005; Braunewell and Bornholdt, 2007). The principle idea
is to allow for fluctuations of event times and test whether the
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dynamical behavior of a given network stays time ordered despite
these fluctuations.

In this work we want to focus on the reliability criterion
that has been used to show the robustness of the yeast cell-
cycle dynamics against timing perturbations (Braunewell and
Bornholdt, 2007) and investigate the interplay of topological
structure and dynamical robustness. Using small genetic circuits
we explore the concept of reliability and discuss design principles
of reliable networks.

However, biological networks have not been engineered with
these principles in mind, but instead have emerged from
evolutionary procedures. We want to investigate whether an
evolutionary procedure can account for reliability of network
dynamics. A number of studies has focused on the question of
evolution towards robustness (Wagner, 1996; Bornholdt and
Sneppen, 2000; Ciliberti et al., 2007; Szejka and Drossel, 2007;
Aldana et al., 2007). However, the evolution of reliability against
timing fluctuations has not been investigated. First indications
that network architecture can be evolved to display reliable
dynamics despite fluctuating transmission times has been
obtained in a first study in Braunewell and Bornholdt (2008).
Using a deterministic criterion for reliable functioning, introduced
in Klemm and Bornholdt (2005a), it was found that small
networks can be rapidly evolved towards fully reliable attractor
landscapes. Also, if a given (unreliable) attractor is chosen as the
‘‘correct’’ system behavior, it was shown that with a high
probability a simple network evolution is able to find a network
that reproduces this attractor reliably, i.e. in the presence of noise.

Here, we use a more biologically plausible definition of timing
noise to investigate whether a network evolution procedure can
generate robust networks. We focus on the question whether a
predefined network behavior can be implemented in a reliable
way, just utilizing mutations of the network structure. We use a
simple dynamical rule to obtain the genes’ activity states, such
that the dynamical behavior of the system is completely
determined by the wiring of the network.

2. Model description

2.1. Boolean dynamics

A standard approach to computer simulations of molecular
biological systems starts from chemical master equations and
their explicit stochastic modeling, e.g. via Monte Carlo algorithms
(Gillespie, 1977). However, such methods need a large number of
parameters and detailed knowledge about the system in order to
completely describe the system dynamics. As an alternative, for
gaining first, qualitative insights into the dynamics of genetic
regulatory systems it has proven useful to apply strongly coarse-
grained models (Bornholdt, 2005).

Boolean networks, first introduced by Kauffman (1969) as
anecdotal models of gene regulation based on random networks,
have emerged as a successful tool for qualitative dynamical
modeling and have been successfully employed in models of
regulatory circuits in various organisms such as Drosophila

melanogaster (Albert and Othmer, 2003), Saccharomyces cerevisiae

(Li et al., 2004), Arabidopsis thaliana (Espinosa-Soto et al.,
2004), and Schizosaccharomyces pombe (Davidich and Bornholdt,
2008). In this class of dynamical models, genes, proteins,
and mRNA are modeled as discrete switches which assume
one of only two possible states. Here, the active state represents a
gene being transcribed or molecular concentrations (of mRNA
or proteins) above a certain threshold level. Thus, at this
level, a regulatory network is modeled as a simple network of
switches.

Time is modeled in discrete steps and the state of all nodes is
updated at the same time depending only on the state of all nodes
at the previous time step according to the wiring of the network
and the given Boolean function at each node.

When such a system is initialized with some given set of node
states, it will in general follow a series of state changes until it
reaches a configuration that has been visited before (finite
number of states). Because of the deterministic nature of the
dynamics, the system has then entered a limit cycle and repeats
the same sequence of states indefinitely (or keeps the same state,
then called a fixed point attractor).

2.2. Stochastic dynamics

In the original Boolean model there are two assumptions that
are clearly non-biological and are thus often criticized: (1) The
synchronized iteration of the Boolean network in discrete time
steps implies total synchrony of all components. (2) The binary
(ON/OFF) node states which prohibit intermediate levels and
gradual effects.

There have been various attempts at loosening these assump-
tions while keeping the simplicity of the Boolean models. It is a
clear advantage of Boolean models that they operate on a finite
state space. The synchronous timing, however, does not hold a
similar advantage apart from computational simplicity. Models
that overcome this synchronous updating scheme have been
suggested in a variety of forms. In Chaves et al. (2006) different
asynchronous schemes are used in the model of the fruit fly. The
simplest asynchronous model keeps the discrete notion of time
but lets events happen sequentially instead of simultaneously. A
continuous-time generalization of Boolean models that is inspired
by differential equation models has been suggested in Klemm and
Bornholdt (2005b). Here, the discreteness of the node states is
kept but the dynamics take place in a continuous time. In Klemm
and Bornholdt (2005a) and Braunewell and Bornholdt (2008) the
limit of infinitesimally small disturbances from synchronous
behavior is investigated.

This concept of allowing variations from the synchronous
behavior will also be used in this work. The principle idea is to use
a continuous time description and identify the state of the nodes
at certain times with the discrete time steps of the synchronous
description (Glass, 1975). Further, an internal continuous variable
is introduced for every node and the binary value of the node is
obtained from this continuous variable using a threshold function.
Now a differential equation can be formulated for the continuous
variable.

This is pictured in Fig. 1. Here the internal dynamics and the
resulting activity state of a node with just one input are shown for
a given input pattern. The activator A of the node B is switched on
(through a signal from another node, for example) at time t ¼ 1
and stays on until it is switched off at time t ¼ 2. In the Boolean
description we would say node A assumes state SA ¼ 1 at time
step 1 and at time step 2 switches to state SA ¼ 0. Node B would
react by switching to state SB ¼ 1 at step 2 and to SB ¼ 0 at step 3.
In the continuous version, we implement this by a delay time and
a ‘‘charging’’ behavior of the concentration value of node B, driven
by the input variable SA. As soon as cB crosses the threshold of 1

2,
the activity state of B switches to SB ¼ 1.

Let us formulate the time evolution of a system of such model
genes by the set of delay differential equations as

tdciðtÞ

dt
¼ f iðt; tdÞ � ciðtÞ. (1)

Here, f iðt; tdÞ denotes the transmission function of node i and
describes the effect of all inputs of node i at the current time. The
parameter t sets the time scale of the production or decay process.
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