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a b s t r a c t

Ocean plankton models are useful tools for understanding and predicting the behaviour of planktonic

ecosystems. However, when the regions represented by the model grid cells are not well mixed, the

population dynamics of grid cell averages may differ from those of smaller scales (such as the laboratory

scale). Here, the ‘mean field approximation’ fails due to ‘biological Reynolds fluxes’ arising from

nonlinearity in the fine-scale biological interactions and unresolved spatial variability. We investigate

the domain-scale behaviour of two-component, 2D reaction–diffusion plankton models producing

transient dynamics, with spatial variability resulting only from the initial conditions. Failure of the

mean field approximation can be quite significant for sub grid-scale mixing rates applicable to practical

ocean models. To improve the approximation of domain-scale dynamics, we investigate implicit spatial

resolution methods such as spatial moment closure. For weak and moderate strengths of biological

nonlinearity, spatial moment closure models generally yield significant improvements on the mean

field approximation, especially at low mixing rates. However, they are less accurate given weaker

transience and stronger nonlinearity. In the latter case, an alternative ‘two-spike’ approximation is

accurate at low mixing rates. We argue that, after suitable extension, these methods may be useful for

understanding and skillfully predicting the large-scale behaviour of marine ecosystems.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Plankton population models have had a degree of success in
explaining the dynamics of laboratory cultures (Fussman et al.,
2000; McCauley et al., 1999). In such experiments, the plankton
are kept well mixed by stirring and zooplankton swimming. This
means that they move, or are moved, around the experimental
volume sufficiently swiftly and randomly that they experience
volumetric average concentrations over their generation time-
scales (Dieckmann et al., 2000). Consequently, spatial variability
within the laboratory experiment has by-design a negligible
influence on the population dynamics.

At slightly larger scales (tens of metres or less) in the ocean
surface mixed layer, turbulent currents might be expected to do a
good job of creating well-mixed conditions. Tracer experiments
(Okubo, 1971) suggest an order-of-magnitude turbulent ‘eddy-
mixing’ timescale of between 0.01 and 1 day for mixed layer
volumes of scale 10 m. Plankton populations with typical genera-
tion timescales of 1 day are therefore likely to be well mixed on
these scales.

A crucially important feature of the oceans, however, is that
they mix material slower over larger spatial scales (Okubo and
Levin, 1980). In fact, Okubo (1976) proposes a mixing rate la �

120L�0:85 day�1, plus or minus an order of magnitude, for an ocean
scale of L m (obtained from the Okubo, 1976 relation: KðLÞ ¼

0:068L1:15 cm2 s�1 for L cm, by dividing by L2 and converting the
units). Consequently, at scales larger than L ¼ 10 m it is not
generally safe to assume well-mixed plankton populations.
A plankton population that is not well mixed may not obey the
same dynamics as a well mixed one, because of dynamical
nonlinearity: laboratory population growth rates usually do not
depend just on population size but also on ðpopulation sizeÞ2 and
perhaps higher powers. Dynamical nonlinearity acting on spatial
variability can distort the coarse-scale (mean-field) population
dynamics. This may lead to failure of the mean field approximation

(MFA), whereby the population dynamics are extrapolated from
the fine to the coarse scale. For plankton populations, this failure
could be very serious, as demonstrated for a simplified plankton
model by Brentnall et al. (2003) (hereafter B03). Failure of the
MFA could be endemic in plankton modelling, where well-mixed
laboratory population dynamics are often assumed to hold true
over ocean model grid cells ranging in scale from 100 m in
regional models to 100 km in global ocean models.

The most obvious, and currently prevalent, method of
accounting for fine-scale variability in plankton ecosystems is to
increase the explicit spatial resolution of the model (i.e., the
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number of grid cells). However, this places heavier demands on
data and model inputs (forcings, initial/boundary conditions) to
accurately constrain extra degrees of model freedom when fitting
the model and making predictions. Moreover, the added compu-
tational burden may impose practical restrictions e.g., on the
spatio-temporal range of the model run, or the number of times it
may be re-run with different parameter values, which in turn may
limit our ability to make, and assess the robustness of, model
predictions for different scenarios e.g., changes in climate.

An alternative, long-familiar to the turbulence modelling
community, is to model higher moments of the unresolved
variability as well as the mean fields (Reynolds, 1895). Hence,
fine scales are resolved ‘implicitly’ in terms of their effect on larger
scales. Over recent decades, a host of ‘turbulence closure’ models,
themselves derived from models used in engineering, have been
applied to model the physics of the ocean mixed layer and
horizontal boundary layers (see Sander, 1998; Umlauf and
Burchard, 2005 for general reviews, or Carniel et al., 2007 for an
oceanographic summary). These account for the effect of advec-
tive nonlinearity acting on unresolved variability in physical/
biological fields to produce mean turbulent fluxes, also known as
the ‘transport Reynolds terms’ (Lévy, 2006). Similar techniques
have also been applied to coarse-resolution large-scale ocean
models to parameterise the effects of unresolved mesoscale
eddies (e.g., Gent and McWilliams, 1990; Gent et al., 1995).
Modification of the standard eddy-diffusivity approach to para-
meterising turbulent fluxes to allow for the finite lifetime of
reactive scalars such as plankton has been suggested by Pasquero
(2005).

However, apparently no attempt has been made to implicitly
resolve the statistical effect of biological nonlinearity on un-
resolved variability in plankton ecosystems, i.e., the ‘biological
Reynolds term’ (Lévy, 2006). This is surprising, given that the
biological dynamics usually involves nonlinearity that is of higher
order than the quadratic nonlinearity of advective transport, and
the spatial variability in plankton concentrations seen in data is
usually very high (e.g., Martin et al., 2005), suggesting that the
size of these neglected biological Reynolds terms may be very
significant.

In this paper, simple two-component, 2D ‘reaction–diffusion’
plankton models are used as high-resolution simulations (HRSs).
The grid-cell scale populations react via a set of continuous-time,
deterministic biological dynamics, identical in every grid cell, and
interact with nearest-neighbour cells by standard linear mixing.
Spatial heterogeneity is only provided by variable initial condi-
tions, and decays due to mixing and transience of the fine-scale
biological dynamics. The accuracy of extrapolating the fine-scale
biological dynamics to the domain-scale mean-field dynamics
(the MFA) is investigated, as well as the possibility of improving
on this approximation with implicit spatial resolution (ISR)
models. These include ‘spatial moment closure’ (SMC) models,
which assume central dominance of the phase space distribution,
and a ‘2-spike approximation’ (2SA), which assumes strong
bimodality. The biological models and parameter sets are chosen
to explore different strengths of biological nonlinearity, and
mixing rates are varied to explore a range of scales relevant to
practical ocean model grid cells.

Moment closure models have been used extensively in recent
years in terrestrial ecology (e.g., Bolker and Pacala, 1997;
Dieckmann et al., 2000; Keeling, 2000a, b; Keeling et al., 2002;
Law and Dieckmann, 2000a, b; Law et al., 2003; Lewis and Pacala,
2000; Murrell et al., 2004; Ovaskeinen and Cornell, 2006; Pascual
and Levin, 1999) and terrestrial epidemiology (e.g., Ferguson et al.,
2001; Filipe and Gibson, 2001; Filipe and Maule, 2003). Readers
familiar with this literature should note that the problem treated
here is different on several accounts.

First, as argued above, plankton populations may be consid-
ered well mixed in the ocean at the laboratory scale (o10 m).
Therefore, rather than starting with an individual-based model
(IBM), we start with a population model for the laboratory scale,
which then needs to be modified somehow to work on the (much
larger) ocean grid cell scale.

Second, land plants are tethered to a solid substrate and act
spatially only when they reproduce, dispersing seeds or pollen
broadly via air or animal movement on a timescale much shorter
than that of plant growth. By contrast, phytoplankton are fully
committed to their liquid environment: they are shifted around
continuously by ocean currents (‘plankton’ deriving from the
Greek for ‘drifter’), and reproduce locally.

Third, in contrast to terrestrial systems, marine primary
producer/consumer populations are generally large (4100 in-
dividuals) at the scale of the laboratory, at least if the consumers
are microzooplankton. This suggests that deterministic models
may be applicable to phytoplankton/zooplankton population
dynamics (Renshaw, 1991). If the zooplankton are interpreted
as mesozooplankton, which are only moderately numerous
(O(10–100)) at the laboratory scale, it may be necessary to
include demographic stochasticity at the level of fine-scale
populations (Vainstein et al., 2007). The methods used in this
paper may be generalised to account for this (e.g., Rodriguez and
Tuckwell, 1996).

Hence deterministic reaction–diffusion equations are used as
‘simulation’ models in this study. This is not to deny that
stochastic IBMs with local (Martin, 2004) and non-local interac-
tions (Birch and Young, 2006; Flierl et al., 1999; Hernández-Garcı́a
and López, 2004) may be necessary for deriving population
dynamics at higher trophic levels—perhaps mesozooplankton and
higher. However, simulating realistic numbers of individual
mesozooplankton in even a single ocean model grid cell may be
computationally unfeasible. IBMs might be used to derive fine-
scale, deterministic population behaviour using ‘moment closure’
as understood in terrestrial applications (see next paragraph).
However, there remains the problem of extrapolating the fine-
scale deterministic population dynamics to coarser scales for
ocean models. An alternative approach might be to let simulated
‘super-individuals’ or ‘agents’ each represent large numbers of real
individuals (Scheffer et al., 1995; Batchelder et al., 2002; Woods,
2005).

Consequently, the use of moment closure in this study has a
more ‘classical’ flavour. In terrestrial ecology, it has been used to
approximate the average behaviour of a stochastic IBM over a
computationally expensive ‘ensemble’ of runs. The result is
typically a closed set of partial integro-differential equations for
the first moments (as functions of time) and second moments
(as functions of time and spatial lag), derived using ‘closure
assumptions’ to approximate the effects of third-order moments
on the dynamics of the second moments (Murrell et al., 2004). By
contrast, in the problem treated here, little is gained by just
transforming from one set of finely resolved, partial differential
equations (PDEs) in (time, real space) to another set of finely
resolved PDEs in (time, lag space), even if the higher-order
moments can be successfully approximated. However, it is shown
herein that the effect of non-zero lag second moments on the
zero-lag second moments can often be neglected without much
loss of accuracy. The result is an SMC model of complexity
comparable to the MFA.

The paper is ordered as follows. In Section 2 (and the
Appendices) two ISR methods are discussed in a general context:
SMC and the nSA. SMC is applied to a general, two-component
reaction–diffusion model, and numerical methods are detailed. In
Section 3 three examples are investigated with different strengths
of biological nonlinearity, obtained by varying the functional
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