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a b s t r a c t

We obtained several structural features of an NK fitness landscape by analytical approach. Particularly,

we focused on spatial distributions of ‘‘ascending slopes’’, ‘‘highlands’’, ‘‘nearly neutral networks’’, and

‘‘local optima’’ along the fitness coordinate W , from the viewpoint of adaptive walks with step-width d ,

where d is the number of mutated sites (Hamming distance) after a generation. The parameter k governs

the degree of the ruggedness on the NK landscape, and we handled cases where k is moderate against

the sequence length. From the foot up to the middle region on the landscape, many ascending slopes

exist (high evolvability) and these slopes extend up near the ‘‘highland’’, which is mathematically

defined as the specific region W ¼W�
d where the expectation of the fitness increment becomes zero.

Denoting the standard deviation of the fitness change at W ¼W�
d by SD�, we considered the existence of

‘‘nearly neutral networks’’, which percolate in the fitness band between W � SD� and W þ SD�. Our

results suggest that the highland corresponds to a phase-transition threshold of the formation of the

nearly neutral networks. Near or over the highland, ‘‘local optima at the dth order’’ appear drastically

(low evolvability), where d means the radius of their basins. The value of W�
d increases with d increasing.

Then, as the fitness ð¼ altitudeÞ becomes higher, the basin size of the local optima increases. This leads

to a conclusion that it is very hard or impossible for walkers with step-width d to reach near the global

peak when d is a realistic large value: d ¼ 1–6, and suggests that the region over the middle in real

landscapes may be considerably smooth with small k-values to maintain high evolvability.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Biological evolution process is comprehended as the ‘‘adaptive
walk’’ or ‘‘hill-climbing’’ on a fitness landscape in genotype space
(sequence space). The concept was first proposed by Wright
(1932), and has been developed in evolutionary biology (May-
nard-Smith, 1970; Eigen, 1992; Kauffman, 1993; Gavrilets, 2004).
In the field of in vitro molecular evolution, which handles artificial
evolution of protein or DNA sequences, the concept of ‘‘fitness’’ is
extended to a molecular physicochemical property such as
propagation rate (Eigen, 1985), enzymatic activity, binding
affinity, or thermostability (Arnold, 2000; Matsuura and Yomo,
2006). Thus, the fitness landscape is regarded as the ‘‘evolutionary
attribute’’ of biopolymers. Many theoretical studies have been
done based on various mathematical models of the landscapes
(Voigt et al., 2000; Gavrilets, 2004). One of the most familiar
models is the NK model (Kauffman and Weinberger, 1989;
Kauffman, 1993). The NK model is a mathematical model
describing a complex system in which an arbitrary element is

affected by other k elements. For a protein, an amino acid site
corresponds to the element in the NK model. If the k sites that
cooperatively affect the jth site are located near the jth site, this
model is called the ‘‘adjacent neighbor (NK) model’’, whereas, if
the k sites are located randomly through the sequence, this model
is called the ‘‘random neighbor (NK) model’’ (Kauffman, 1993).
The fitness landscape constructed by the NK model is called the
‘‘NK (fitness) landscape’’. The NK landscape with k ¼ 0 has a single
peak, whereas the landscape becomes more rugged and has more
local peaks with k increasing.

The original NK model was proposed by Kauffman and Levin
(1987) and many slightly modified models have been studied
(Barnett, 1998; Newman and Engelhardt, 1998; Iguchi et al., 2005).
In almost all cases, they have adopted a binary sequence space,
where the number of available letters is two (0 or 1). We denote
that by l ¼ 2. Many theorists have been interested in such issues
as the height of the global peak and local peaks, the number of
local peaks, and the walk length from a random point. These
issues were investigated numerically by computer simulation in
most studies (e.g. Kauffman, 1993). The first analytical study was
conducted by Weinberger (1991). Recently, several rigorous
analytical studies were conducted by Evans and Steinsaltz
(2002), Durrett and Limic (2003), and Limic and Pemantle
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(2004), in which they adopted the adjacent neighbor model with
l ¼ 2. Iguchi et al. (2005) investigated the effect of a scale-free
network of inter-sites interaction on the properties of the NK
landscape. The NK model has also been adopted to study the
neutrality on the evolution or neutral evolution (Barnett, 1998;
Ohta, 1998; Newman and Engelhardt, 1998).

Meanwhile, several studies tried to estimate the k-value in
real landscapes by fitting the NK model to experimental data. The
k-value seems inherent in the physicochemical property of
individual biopolymers. Kauffman and Weinberger (1989) applied
the NK model to affinity maturation of the V region in
immunoglobulin and estimated that k is about 40, from the
viewpoint of the number of steps of adaptive walk up to the local
optima (Kauffman, 1993). Fontana et al. (1993) examined the RNA
free energy landscape by computer experiments, and estimated
k ¼ 7–8 for this landscape in terms of autocorrelation on the
landscape. In our previous paper (Hayashi et al., 2006; Aita et al.,
2007), we demonstrated that the experimental data in an in vitro

molecular evolution can be explained quantitatively by our
adaptive-walk theory on an NK landscape, which was defined by
the random neighbor (NK) model. Hayashi and coworkers carried
out in vitro molecular evolution beginning with a defective fd
phage carrying a random polypeptide (139 a.a.) in place of the g3p
minor coat protein D2 domain, which is essential for phage
infection. Through 20 mutation-selection cycles, the random
polypeptide evolved gradually up to the middle region of the fd-
phage infectivity landscape in the free energy scale (Hayashi et al.,
2006). Our analysis of the experimental data suggested k � 27 for
this landscape (Aita et al., 2007).

Therefore, in light of the great importance of the NK land-
scapes, we examined analytically structural features of the NK
landscape (l ¼ 20, random neighbor model) from the viewpoint
of an adaptive walker with step-width d. Particularly, we were
concerned with spatial distributions of the local optima at the dth
order, where d means the radius of their basins. Almost all
previous studies considered cases where d ¼ 1, because they
handled natural evolution in which mutation occurs infrequently.
We want to make a note that our interest is not in natural
evolution but in the in vitro molecular evolution, which can
control the number of mutated sites (Hamming distance) d after a
generation and population size. In addition to this, our originality
lies in that we analytically obtained the local fitness distribution
over all possible d-fold point mutants generated from a reference
sequence with fitness W (Aita et al., 2007). Many statistical
properties of the landscape were derived from the local fitness
distribution. In this paper, we will refer to the spatial distributions
of ‘‘ascending slopes’’, ‘‘highlands’’, ‘‘nearly neutral networks’’, and
‘‘local optima’’ along the fitness coordinate.

2. Model of the NK fitness landscape

We consider all conceivable amino acid sequences with a chain
length of n, and l letters are available at every site, where l is large
enough to satisfy ðl� 1Þ=l � 1. Then, each sequence is mapped
into the corresponding point in the l-valued n-dimensional
sequence space. The fitness W for a given sequence
‘‘A1A2; . . . ;An’’ is defined by

W ¼
Xn
j¼1

wjðAjjAj1
;Aj2

; . . . ;Ajk
Þ, (1)

where wjðAjjAj1
;Aj2

; . . . ;Ajk
Þ is the ‘‘site-fitness’’, i.e., a fitness

contribution from a particular letter Aj at the jth site when the k

sites fj1; j2; . . . ; jkg are occupied by the particular letters
fAj1 ;Aj2

; . . . ;Ajk
g. The k sites fj1; j2; . . . ; jkg are randomly chosen

from all n� 1 sites except the jth site (‘‘random neighbor model’’).
The assignment of site-fitness values is modeled as follows: with a
set of letters fAj1

;Aj2
; . . . ;Ajk

g given, a site-fitness value of an
arbitrary letter a (e.g., a ¼ Ala;Cys; . . . ;Tyr) for each site is
randomly once assigned from the following set of l values
(‘‘quenched model’’):

wjðajAj1 ;Aj2
; . . . ;Ajk

Þ

2 � 1�
2i

l� 1

� �����i ¼ 0;1;2; . . . ; l� 1

� �
, (2)

where � is a positive constant: �40. We do not allow the
degeneracy of assignment, that is, wjðaj � � �Þawjða

0j � � �Þ for aaa0.
Therefore, the underlying density function of site-fitness w at each
site is given by the comb function:

1

l

Xl�1

i¼0

d w� � 1�
2i

l� 1

� �� �
, (3)

where dðxÞ is Dirac’s delta function. The reason why we fix the
site-fitness distribution as shown in Eq. (3) lies in analytical
tractability demonstrated in Appendix C.1 We note that our
theoretical conclusion is robust to the shape of the site-fitness
distribution (Limic and Pemantle, 2004) and also robust to the
site-dependence of �-values (Aita et al., 2004). From Eq. (3), we
can see that the mean of the site-fitness values over l letters is
equal to zero, while the variance, denoted by s2, is given by

s2 �
�2

3
, (4)

which is a well-known property of the discrete uniform distribu-
tion.

The fitness landscape resulting from this model is called the
‘‘NK landscape’’, although there are several differences from the
original NK landscape (Kauffman and Weinberger, 1989; Wein-
berger, 1991; Kauffman, 1993). In the case of k ¼ 0, the fitness
landscape has a single peak. As the k-value increases, the fitness
landscape becomes more rugged. In spite of the ruggedness, there
are so many slopes from the foot to the middle region, whereas
local peaks with a large basin size are likely to appear at high
altitudes on the landscape. In this paper, we focus on the cases
where k is moderate or large, and describe these features
quantitatively from an analytical approach.

In this paper, we describe several landscape properties, such as
the occurrence probability of local optima, along one-dimensional
fitness coordinate W . The probability density of the fitness W over
all possible sequences is given approximately as the following
normal distribution with the mean 0 and variance V:

NðWj0; VÞ for � H%W%H, (5)

where

H � � n and V ¼ s2 n � �
2n
3

(6)

(derivation is shown in Appendix A). The mean of fitness over the
whole sequence space corresponds to the ‘‘foot’’ of the landscape,
while regions where Wo0 corresponds to an ‘‘undersea’’ and is
negligible for the adaptive walks that start from random points,
which are likely to be at the foot. Since the fitness at the global
peak takes about Hð¼ �nÞ,2 then H corresponds to the height of the
landscape from the foot to the global peak. In this paper, we focus
on the regions from the foot to the global peak: 0%W%H.

In the NK model mentioned above, an arbitrary single-point
mutation causes the changes in site-fitness at about 1þ k sites,
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1 In more familiar variants of the NK model, site-fitness values are assigned

from a continuous (uniform or normal) distribution.
2 This is not necessarily guaranteed for k^1.
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