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a b s t r a c t

The formation of out-of-equilibrium patterns is a characteristic feature of spatially extended, biodiverse,

ecological systems. Intriguing examples are provided by cyclic competition of species, as metaphorically

described by the ‘rock-paper-scissors’ game. Both experimentally and theoretically, such non-transitive

interactions have been found to induce self-organization of static individuals into noisy, irregular

clusters. However, a profound understanding and characterization of such patterns is still lacking. Here,

we theoretically investigate the influence of individuals’ mobility on the spatial structures emerging in

rock-paper-scissors games. We devise a quantitative approach to analyze the spatial patterns self-

forming in the course of the stochastic time evolution. For a paradigmatic model originally introduced

by May and Leonard, within an interacting particle approach, we demonstrate that the system’s

behavior—in the proper continuum limit—is aptly captured by a set of stochastic partial differential

equations. The system’s stochastic dynamics is shown to lead to the emergence of entangled rotating

spiral waves. While the spirals’ wavelength and spreading velocity is demonstrated to be accurately

predicted by a (deterministic) complex Ginzburg–Landau equation, their entanglement results from the

inherent stochastic nature of the system. These findings and our methods have important applications

for understanding the formation of noisy patterns, e.g. in ecological and evolutionary contexts, and are

also of relevance for the kinetics of (bio)-chemical reactions.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial distribution of individuals, as well as their mobility, are
common features of real ecosystems that often come paired (May,
1974). On all scales of living organisms, from bacteria residing in
soil or on Petri dishes, to the largest animals living in savannas—

like elephants—or in forests, populations’ habitats are spatially
extended and individuals interact locally within their neighbor-
hood. Field studies as well as experimental and theoretical
investigations have shown that the locality of the interactions
leads to the self-formation of complex spatial patterns (May, 1974;
Murray, 2002; Turing, 1952; Nowak and May, 1992; Hassell et al.,
1991, 1994; Blasius et al., 1999; Kerr et al., 2002; King and
Hastings, 2003; Hauert and Doebeli, 2004; Scanlon et al., 2007;
Kefi et al., 2007; Szabó and Fath, 2007; Perc et al., 2007; Nowak,
2006). Another important property of most individuals is
mobility. For example, bacteria swim and tumble, and animals
migrate. As motile individuals are capable of enlarging their

district of residence, mobility may be viewed as a mixing, or
stirring mechanism which ‘counteracts’ the locality of spatial
interactions.

The combined influence of these effects, i.e. the competition
between mobility and spatial separation, on the spatio-temporal
development of populations is one of the most interesting and
complex problems in theoretical ecology (May, 1974; Murray,
2002; Turing, 1952; Hassell et al., 1994; King and Hastings, 2003;
Janssen, 2001; Reichenbach et al., 2007a). If mobility is low,
locally interacting populations can exhibit involved spatio-
temporal patterns, like traveling waves (Igoshin et al., 2004),
and for example lead to the self-organization of individuals into
spirals in myxobacteria aggregation (Igoshin et al., 2004) and
insect host–parasitoid populations (Hassell et al., 1991), or more
fractal-like structures in competing strains of E. coli (Kerr et al.,
2002). On the other hand, high mobility results in well-mixed
systems where the spatial distribution of the populations is
irrelevant (Maynard Smith, 1982; Hofbauer and Sigmund, 1998).
In this situation, spatial patterns do no longer form: The system
adopts a spatially uniform state, which therefore drastically
differs from the low-mobility scenario.

An intriguing motif of the complex competitions in a popula-
tion, promoting species diversity, is constituted by three
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subpopulations exhibiting cyclic dominance. This basic motif is
metaphorically described by the rock-paper-scissors game, where
rock crushes scissors, scissors cut paper, and paper wraps rock.
Such non-hierarchical, cyclic competitions, where each species
outperforms another, but is also itself outperformed by a
remaining one, have been identified in different ecosystems like
coral reef invertebrates (Jackson and Buss, 1975), rodents in the
high-Arctic tundra in Greenland (Gilg et al., 2001), lizards in the
inner Coast Range of California (Sinervo and Lively, 1996) and
microbial populations of colicinogenic E. coli (Kerr et al., 2002;
Kirkup and Riley, 2004). In the latter situation, it has been shown
that spatial arrangement of quasi-immobile bacteria (because of
‘hard’ nutrient or substrate) on a Petri-dish leads to the stable
coexistence of all three competing bacterial strains, with the
formation of irregular patterns. In stark contrast, when the system
is well-mixed, there is spatial homogeneity resulting in the take
over of one subpopulation and the extinction of the others after a
short transient.

It is worth noting that the emergence of noisy patterns, as
those studied here, is a feature shared across disciplines by many
complex systems characterized by their out-of-equilibrium nature
and nonlinear interactions. Examples range from the celebrated
Belousov–Zhabotinsky reaction (Zaikin and Zhabotinsky, 1970)
(spiraling patterns) and many other chemical reactions (Kapral
and Showalter, 1995), to epidemic outbreaks (traveling waves)
(Grenfell et al., 2001; Cummings et al., 2004), excitable media
(Muratov and Vanden-Eijnden, 2007; Kapral and Showalter, 1995),
and calcium signaling within single cells (Lechleiter et al., 1991;
Falcke, 2004; Bootmann et al., 2006). Moreover, cyclic dynamics
as described by the rock-paper-scissors game occur not only in
population dynamics but have, e.g. been observed in social
dilemmas relevant in behavioral sciences (Sigmund et al., 2001;
Hauert et al., 2002). Therefore, we would like to emphasize that
the methods presented in this work are not limited to theoretical
ecology and biology, but have a broad range of multidisciplinary
applications and notably include the above fields.

Pioneering work on the role of mobility in ecosystems was
performed by Levin (1974), where the dynamics of a population
residing in two coupled patches was investigated: Within a
deterministic description, Levin identified a critical value for the
individuals’ mobility between the patches. Below the critical
threshold, all subpopulations coexisted, while only one remained
above that value. Later, more realistic models of many patches,
partly spatially arranged, were also studied, see Hassell et al.
(1991, 1994); Blasius et al. (1999); Alonso and McKane (2002) as
well as references therein. These works shed light on the
formation of patterns, in particular traveling waves and spirals.
However, patch models have been criticized for treating the space
in an ‘‘implicit’’ manner (i.e. in the form of coupled habitats
without internal structure) (Durrett and Levin, 1998). In addition,

the above investigations were often restricted to deterministic
dynamics and thus did not address the spatio-temporal influence
of noise. To overcome these limitations, Durrett and Levin (1997)
proposed to consider interacting particle systems, i.e. stochastic
spatial models with populations of discrete individuals distrib-
uted on lattices. In this realm, studies have mainly focused on
numerical simulations and on (often heuristic) deterministic
reaction–diffusion equations, or coupled maps (Durrett and Levin,
1994, 1997, 1998; King and Hastings, 2003; Czárán et al., 2002;
Liebermann et al., 2005; Mobilia et al., 2006, 2007; Szabó and
Fath, 2007).

Here, we demonstrate how a—spatially explicit—stochastic
model of cyclically interacting subpopulations exhibits self-
formation of spatial structures which, in the presence of
individuals’ mobility, turn into surprisingly regular, geometric
spiral waves. The latter become visible on the scale of a large
number of interacting individuals, see Fig. 1 (right). In contrast,
stochastic effects solely dominate on the scale of a few
individuals, see Fig. 1 (left), which interact locally with their
nearest neighbors. Spatial separation of subpopulations starts to
form on an intermediate scale, Fig. 1 (middle), where mobility
leads to fuzzy domain boundaries, with major contributions of
noise. On a larger scale, Fig. 1 (right), these fuzzy patterns adopt
regular geometric shapes. As shown below, the latter are jointly
determined by the deterministic dynamics and intrinsic stochastic
effects. In the following, we elucidate this subtle interplay by
mapping—in the continuum limit—the stochastic spatial dy-
namics onto a set of stochastic partial differential equations
(SPDEs) and, using tools of dynamical systems (such as normal
forms and invariant manifolds), by recasting the underlying
deterministic kinetics in the form of a complex Ginzburg–Landau
equation (CGLE). The CGLE allows us to make analytical predic-
tions for the spreading velocity and wavelength of the emerging
spirals waves. Below, we provide a detailed description of these
methods and convey a thorough discussion of the spatio-temporal
properties of the system with an emphasis on the role of spatial
degrees of freedom, mobility and internal noise.

In our first article on this subject (Reichenbach et al., 2007a)
we have described how a mobility threshold separates a
biodiverse regime (arising for low mobilities) from a high-
mobility regime where diversity is rapidly lost. In Reichenbach
et al. (2007b) we have further analyzed the traveling spiral waves
that arise for low mobilities and computed correlation functions
as well as the spirals’ wavelength and spreading velocity. In this
article, we provide a comprehensive discussion of the quantitative
analysis of the system’s properties. This includes the detailed
derivation of all mathematical equations, an accurate description
of the numerical simulations (via the implementation of an
efficient algorithm for the lattice simulations taking exchange
processes into account) as well as the analytical treatment of the
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Fig. 1. The stochastic spatial system at different scales. Here, each of the colors yellow, red, and blue (level of gray) represents one species, and black dots identify empty

spots. Left: Individuals are arranged on a spatial lattice and randomly interact with their nearest neighbors. Middle: At the scale of about 1000 individuals, stochastic effects

dominate the system’s appearance, although domains dominated by different subpopulations can already be detected. Right: About 50,000 mobile interacting individuals

self-organize into surprisingly regular spiral waves.
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