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a b s t r a c t

The jumps in population size due to the occurrence of an unfavorable physical environment (e.g. the

effects of periodic climate disaster on the population size), or due to the intrinsic physiological and

reproductive mechanisms of the population (e.g. the seasonal reproduction of most animal

populations), can be called impulsive perturbations. A two-phenotype evolutionary game dynamics

with impulsive effects is investigated. The main goal is to show how the evolutionary game dynamics is

affected by the impulsive perturbations. The results show that the impulsive perturbations not only

result in periodic behavior, but also it is possible that an ESS strategy based on the traditional concept of

evolutionary stability can be replaced successfully by a non-ESS strategy.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The jumps in population size due to the occurrence of an
unfavorable physical environment (e.g. the effects of periodic
climate disaster on the population size), or due to the intrinsic
physiological and reproductive mechanisms of the population
(e.g. the seasonal reproduction of most wild animal populations),
are called impulsive perturbations. Theoretically, the Lotka–Vol-
terra systems with impulsive perturbations have been analyzed
by some authors using the theory of impulsive differential
equation (Laksmikantham et al., 1989; Bainov and Simeonov,
1993; Ballinger and Liu, 1997; Liu and Rohlf, 1998; Liu and Chen,
2003, 2004; Tang and Chen, 2003; Jin et al., 2004; Pei et al., 2005;
Zhang et al., 2005; Song and Xiang, 2006; Liu et al., 2007). For
example, consider the classic Logistic model

dN

dt
¼ rN 1�

N

K

� �
,

where N represents the population size, r the intrinsic growth
rate, and K the carrying capacity of environment. For the
population dynamics with impulsive effects, the key assumption
is that the impulsive perturbations (external effects) can cause
jumps in the population size (Bainov and Simeonov, 1993). As a
result of an impulsive perturbation at the moment t ¼ tk let the

population size suffer an increment dk, that is

DNðtkÞ ¼ Nðtþk Þ � Nðt�k Þ ¼ dk,

where Nðt�k Þ and Nðtþk Þ, are respectively, the population sizes
before and after the impulsive effect. For the case with DN ¼ C and
Nðt�k Þ ¼

~N (tk ¼ kT), the Logistic model with impulsive effect has a
T-periodic solution

NðtÞ ¼

Kð ~N þ CÞ
~N þ C þ ðK � ~N � CÞe�rt

¼ N0ðtÞ for 0otpT ;

N0ðt � kTÞ for kTotpkT þ T

8><
>:

for k ¼ 0;1;2; . . . ; where

T ¼
1

r
ln
ðK � ~N � CÞ ~N

ð ~N þ CÞðK � ~NÞ

(see Bainov and Simeonov, 1993). Although the theory of
population dynamics with impulsive perturbations has been used
to explain the impulsive stabilization and optimal control of
population dynamics (Liu, 1995; Fan and Wang, 1998; Angelova
and Dishliev, 2000; Tang and Chen, 2002; Xiao et al., 2006), the
species coexistence (Chesson et al., 2004; Wang et al., 2007; Pei
et al., 2005), the biological control and management of pesticide
(Grasman et al., 2001; Tang and Cheke, 2005), and the mecha-
nisms of epidemiology (Donofrio, 1997; Shulgi et al., 1998; Roberts
and Kao, 1998), the effects of impulsive perturbations on the
population evolutionary dynamics are still not clear.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

0022-5193/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jtbi.2008.05.016

� Corresponding authors. Tel.: +86 10 64807192; fax: +86 10 64807099 (Yi Tao).

E-mail addresses: lizq@ibcas.ac.cn (Z. Li), yitao@ioz.ac.cn (Y. Tao).

Journal of Theoretical Biology 254 (2008) 384– 389

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.05.016
mailto:lizq@ibcas.ac.cn
mailto:yitao@ioz.ac.cn


In order to explain the evolution of animal behavior, Maynard
Smith (1982) developed the concept of an evolutionarily stable
strategy (ESS) (see also Maynard Smith and Price, 1973). According
to Maynard Smith’s (1982) definition, an ESS is a strategy which, if
adopted by a population of players, cannot be invaded by any
alternative strategy. For the standard evolutionary game dynamics
based on the payoff matrix, it has been shown that if an interior
equilibrium is an ESS equilibrium, then it must be asymptoti-
cally stable (Taylor and Jonker, 1978; Maynard Smith, 1982;
Hofbauer and Sigmund, 1988, 1998; Cressman, 1992). Recently,
Nowak et al. (2004) studied the emergence of cooperation and
evolutionary stability in finite populations using the Moran
process. Cooperators help others at a cost to themselves, while
defectors receive the benefits of altruism without providing any
help in return. In general, defectors are stable against invasion by
cooperators. This is based on the traditional concept of evolu-
tionary stability and dynamics in infinite populations. However,
for evolutionary game dynamics in finite populations, Nowak et al.
(2004) showed that a single cooperator can invade a population of
defectors with a probability that corresponds to a net selective
advantage.

It is well known that the seasonal reproduction is one of the
most important characteristics of most wild animal populations.
Tang and Chen (2002) developed a single-species model with
stage structure for the dynamics in a wild animal population for
which births occur in a single pulse once per time period. Their
main result shows that the dynamical behavior of the single
species model with birth pulse can be very complex. From an
evolutionary game perspective, a natural question is how the
evolutionary stability of phenotypes is affected by the seasonal
reproduction (or the impulsive perturbations due to the other
reasons). For example, for the classical hawk–dove model
developed by Maynard Smith (1982), if the characteristic of
seasonal reproduction (or the mechanism of impulsive perturba-
tions) is introduced into this model, we have to answer whether
the traditional concept of evolutionary stability is still valid. In
this paper, a simple two-phenotype evolutionary game model
with impulsive perturbations is investigated. Our main goal is to
show how the evolutionary game dynamics is influenced by the
impulsive perturbations, and to reveal the relationship between
the dynamical properties of the system and the traditional
concept of evolutionary stability.

2. Basic model

Consider a standard two-phenotype matrix evolutionary game
model, where the two pure strategies are denoted by R1 and R2,
respectively, and the payoff matrix is given by A ¼ ðaijÞ2�2. In this
model, it is assumed that (a) each individual uses one of two
possible pure strategies; (b) individuals interact in random
pairwise contests; and (c) aij is the payoff of strategy Ri when
interacting with strategy Rj for i; j ¼ 1;2 (Maynard Smith, 1982). We
assume also that all individuals are pure strategists and that they
have the same density-dependent background fitness, denoted by
WðNÞ with dWðNÞ=dNo0 where N is the population size (Maynard
Smith, 1982). Let ni denote the number of individuals using strategy
Ri (i ¼ 1;2), i.e., N ¼ n1 þ n2, and x the frequency of strategy R1 in
the population, i.e., x ¼ n1=N. According to Maynard Smith (1982),
the dynamics for ni can be given by

dni

dt
¼ niðf i þWðNÞÞ (1)

for i ¼ 1;2, where f i represents the expected payoff of strategy Ri, i.e.,

f i ¼ xai1 þ ð1� xÞai2, (2)

and the mean payoff of the population is

f̄ ¼ xf 1 þ ð1� xÞf 2. (3)

Clearly, the frequency dynamics can be given by

dx

dt
¼ xð1� xÞðf 1 � f 2Þ (4)

and is also density-independent. For this simple evolutionary game
dynamics, Maynard Smith (1982) showed that (a) Eq. (4) has a
unique interior positive equilibrium x� ¼ ða12 � a22Þ=ða12 � a22 þ

a21 � a11Þ with x� 2 ð0;1Þ if and only if both a12 � a22 and a21 � a11

are positive, or both are negative; (b) the interior positive
equilibrium x� is asymptotically stable if and only if x� is an ESS
equilibrium, i.e., a124a22 and a214a11; (c) the boundary x ¼ 1
(or x ¼ 0) is asymptotically stable if and only if the pure strategy R1

(or R2) is an ESS, i.e., a114a21 (or a224a12) (see also Lessard, 1984;
Hofbauer and Sigmund, 1988, 1998; Cressman, 1992).

As pointed out in Section 1, we introduce the mechanism of
impulsive perturbations into the above standard evolutionary
game model, where the impulsive perturbations can be due to the
intrinsic physiological and reproductive mechanisms of animal
population (e.g. seasonal reproduction), or due to the occurrence
of an unfavorable physical environment. In order to do this, we
make some basic assumptions:

(i) There are effects of impulsive perturbations on the number
of individuals that can cause jumps in the number of
individuals with phenotype Ri (i ¼ 1;2), niðtÞ. As a result of
an impulsive perturbation at the moment t ¼ tk, the
number of individuals with phenotype Ri (i ¼ 1;2), niðtÞ,
suffers an increment DniðtkÞ, that is DniðtkÞ ¼ niðt

þ

k Þ � niðt
�
k Þ

where niðt
þ

k Þ and niðt
�
k Þ are, respectively, the numbers of

individuals with phenotype Ri after and before the impulsive
effect. A natural constraint is niðt

þ

k Þ ¼ niðt
�
k Þ þ DniðtkÞ40

which means that the number of individuals with phenotype
Ri is not destroyed as a result of the impulsive effect (Bainov
and Simeonov, 1993).

(ii) For the phenotype Ri (i ¼ 1;2), the increment DniðtkÞ depends
on niðt

�
k Þ, that is defined as Dni ¼ gini for t ¼ tk where gi is a

constant withgi4� 1 (i.e., niðt
þ

k Þ must be positive) (Bainov
and Simeonov, 1993). For g1ag2, it means that the effects of
impulsive perturbations on the numbers of individuals with
phenotype R1 and with phenotype R2 are different.

(iii) For simplicity, it is assumed that the moments tk are
t-periodic: tk ¼ t0 þ kt for k ¼ 1;2; . . . ; i.e., the impulsive
effect takes place after equal time intervals.

According to the above three assumptions, Eq. (1) can be
rewritten as

dni

dt
¼ niðf i þWðNÞÞ; takt,

Dni ¼ gini; t ¼ kt; k ¼ 0;1;2; . . . (5)

for i ¼ 1;2. Normally, this equation is called the impulsive
differential equation. For our main goal, we are more interested
in the effects of impulsive perturbations on the frequency
dynamics. Notice that, at the moment t ¼ kt, the increment in
the frequency of phenotype R1, x, denoted by Dx, is

Dx ¼ UðxÞxð1� xÞ, (6)

where

UðxÞ ¼
g1 � g2

1þ xg1 þ ð1� xÞg2
(7)

with �1oUðxÞo1 and dUðxÞ=dx ¼ �UðxÞ2. Thus, similarly to
Eq. (5), the impulsive differential equation for the frequency
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