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a b s t r a c t

Competitive intransitivity occurs when species’ competitive abilities cannot be listed in a strict

hierarchy, but rather form competitive loops, as in the game ‘Rock–Paper–Scissors’. Indices are useful for

summarizing intransitivity in communities; however, as with most indices, a great deal of information

is compressed into single number. So while recent ecological theory, experiments, and natural history

observations demonstrate that competitive intransitivity can promote species coexistence, the

consequence of variation in the ‘topology’ of competitive interactions that is not accounted for by

intransitivity indices is much less well understood. We use a continuous analytical model and two

complementary discrete lattice models (one spatially explicit, the other aspatial) to demonstrate that

such variation does indeed greatly affect species coexistence. Specifically, we show that although

intransitivity indices are good at capturing broad patterns of coexistence, communities with different

levels of intransitivity can have equal coexistence, and communities with equal intransitivity can have

different coexistence, due to underlying variation in competitive network topology.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Intransitive competition can be described most easily using the
simple analogy of the ‘Rock–Paper–Scissors’ game in which three
strategies compete and each strategy is dominant to just one
other: Rock smashes Scissors, Scissors cuts Paper, and Paper
covers Rock. This is in contrast to hierarchical or completely
transitive competition, which occurs if Scissors cuts Paper, but
contrary to the game’s tradition, yet perhaps more realistically,
Rock smashes both Scissors and Paper. Numerous theoretical
models have demonstrated that transitive competition quickly
leads to a monoculture of the best competitor (e.g., Rock in the
above transitive competition example), while intransitive compe-
tition contributes to greater coexistence (Czárán et al., 2002;
Durrett and Levin, 1994, 1998; Gilpin, 1975; Huisman et al., 2001;
Huisman and Weissing, 1999, 2001a, b; Kerr et al., 2002; Laird and
Schamp, 2006, 2008; May and Leonard, 1975; Reichenbach et al.,
2007; Szabó et al., 2004; Tainaka, 1988). Thus, intransitivity is a
potential mechanism by which competition itself can promote
coexistence—in contrast to most coexistence theories which
require that competition be mitigated (Chesson, 2000; Huston,
1994; Tokeshi, 1999).

Furthermore, intransitivity has been identified for a wide
variety of taxonomic groups, including plants (e.g., Lankau and
Strauss, 2007; Shipley, 1993; Taylor and Aarssen, 1990), sessile
marine organisms such as bryozoans, ascidians, cnidarians,
sponges, and coralline algae (Buss, 1980, 1990; Buss and Jackson,
1979; Jackson, 1983), bacteria (Kerr et al., 2002), and mating
strategies in lizards (Sinervo and Lively, 1996; Sinervo et al., 2007).
Therefore, intransitive competition may be an important biologi-
cal mechanism promoting genetic, species, and behavioral
diversity in natural systems.

Competition is simplified in three-species models because only
completely intransitive or completely transitive competition is
possible (e.g., Durrett and Levin, 1994, 1998; Gilpin, 1975; Kerr
et al., 2002; May and Leonard, 1975). However, competitive inter-
relationships can be increasingly complex as more species are
considered (e.g., Huisman et al., 2001; Huisman and Weissing,
1999, 2001a, b; Karlson and Jackson, 1981; Laird and Schamp,
2006, 2008). For example, increasing the number of competing
species also increases the number of different levels of intransi-
tivity that are possible in a community of competitors (e.g., Laird
and Schamp, 2008; Petraitis, 1979). This is true because an
intransitive loop requires at least three species (as in Rock–
Paper–Scissors), and with more than three species, it is possible to
have multiple intransitive loops. Hence, indices of intransitivity
(e.g., Bezembinder, 1981; Kendall and Babington Smith, 1940;
Laird and Schamp, 2006, 2008; Petraitis, 1979; Slater, 1961),
become increasingly continuous as the number of species
increases. Moreover, theoretical models have revealed that these
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indices are powerful predictors of species coexistence (Laird and
Schamp, 2006, 2008).

One drawback of intransitivity indices, however, is that they
abstract a great deal of information regarding competitive
relationships among community members (i.e., ‘competitive
topologies’) into a single number. This is because the number of
possible competitive topologies increases at a much faster rate
than the number of species, and hence the number of possible
levels of intransitivity (Electronic Supplementary Material 1).
Topological variation that is not fully accounted for by intransi-
tivity indices can be visualized by noting that assemblages with
equal intransitivity can have different topologies (Fig. 1). Im-
portantly, topological variation that is not accounted for by
indices of intransitivity can impact coexistence (e.g., see the
discussion of ‘pathway number’ in Laird and Schamp, 2006). In
this paper, we use a continuous mean-field model as well as
discrete spatial and aspatial lattice models, to demonstrate that
although intransitivity indices are good predictors of broad
patterns of coexistence, unexplored variation in competition
matrix topology influences coexistence for five competing species.

2. Methods

2.1. Tournament matrices

‘Tournament matrices’ describe the competitive relationships
for all pairs of species in a community. They are similar to the
‘competitive outcomes matrices’ discussed in Laird and Schamp

(2006, 2008). A tournament matrix for s species has dimensions of
s rows by s columns. If the species denoted by row i outcompetes
the species denoted by column j, position (i, j) is filled with a ‘1’.
Conversely, if the species denoted by row i is outcompeted by the
species denoted by column j, position (i, j) is filled with a ‘�1’. If
i ¼ j, position (i, j) is filled with a ‘0’.

The number of possible tournament matrices increases
explosively with the number of species. However, many of these
are topologically equivalent (i.e., they are identical unlabeled
graphs in the context of graph theory). For instance, the following
two matrices are equivalent representations of Rock–Paper–Scis-
sors (‘R–P–S’) competition:

0 �1 1

1 0 �1

�1 1 0

�

0 1 �1

�1 0 1

1 �1 0

The left-hand matrix’s rows and columns can be ordered R–P–S,
P–S–R, or S–R–P, whereas the right-hand matrix’s rows and
columns can be ordered R–S–P, S–P–R, or P–R–S. The matrices are
equivalent because one can be converted to another by a simple
re-ordering of the rows and columns. Notwithstanding the
redundancy of tournament matrices, there are still a huge number
of unique tournament matrices as s becomes large (Goldberg and
Moon, 1970). For example, while there are only two unique three-
species tournaments (e.g., the traditional and modified Rock–
Paper–Scissors games described in Section 1), there are 456
seven-species tournament matrices, and close to a million-billion-
trillion 17-species tournament matrices (Electronic Supplemen-
tary Material 1).
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Fig. 1. The twelve unique interaction web diagrams and tournament matrices for five-species communities. Panel names correspond with the ‘tournament names’ in

Table 1, the example mean-field predictions in Fig. 2, and the x-axes of Fig. 3. Species are shown as nodes (circles) and their pair-wise competitive relations are shown as

edges (arrows). Arrows point from competitive dominant to subordinate (e.g., �-J means that the species denoted by the black node outcompetes the species denoted by

the white node). An example tournament matrix is given for each interaction web: a ‘1’ means the row species outcompetes the column species, a ‘�1’ means the column

species outcompetes the row species, and a colour ‘0’ is given when row ¼ column (the 0s also provide the row and column corresponding to the node of the same colour;

furthermore, their colours match up with the species in Fig. 2). (a) The ‘hierarchical’ case (Petraitis’ t ¼ 1, minimum number of reversals to convert the matrix to a hierarchy

sp ¼ 0; Petraitis, 1979). (b) The six unique manifestations of the ‘moderately intransitive’ case (t ¼ 2
3, sp ¼ 1). White arrowheads denote the competitive relations that would

have to be reversed to convert these networks into the hierarchy given in (a) (for (bi)–(biii), the hierarchy in (a) is the only hierarchy within a single reversal; for (biv)–(bvi),

there are two other hierarchies that are equally close–not shown). (c) The four unique manifestations of the ‘strongly intransitive’ case (t ¼ 1
3, sp ¼ 2). White arrow heads are

the same as in (b) (for (ci), the hierarchy in (a) is the only hierarchy within a single reversal; for (cii), (ciii), and (civ), there are, respectively, one, two, and four other equally

close hierarchies—not shown). (d) The ‘perfectly intransitive’ case (t ¼ 0, sp ¼ 3). White arrowheads are the same as in (b) and (c) (there are four other equally close

hierarchies–not shown). All other five-species tournament matrices are reconfigurations of the twelve shown here. Note that Petraitis’ t is equal to one minus the minimum

number of reversals needed to convert a tournament to a hierarchy (sp), divided by the maximum possible value of sp for communities of a given size (for five-species

communities, MAX(sp) ¼ M ¼ 3; see Table 1).
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