
An observation-based approach towards self-managing web servers*

Abhishek Chandrac,*, Prashant Pradhana, Renu Tewarib, Sambit Sahua, Prashant Shenoyd

aIBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
bIBM Almaden Research Center, San Jose, CA 95120, USA

cDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
dDepartment of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Received 29 June 2004; revised 28 June 2005; accepted 14 July 2005

Available online 15 August 2005

Abstract

As more business applications have become web enabled, the web server architecture has evolved to provide performance isolation,

service differentiation, and QoS guarantees. Various server mechanisms that provide QoS extensions, however, rely on external

administrators to set the right parameter values for their desirable performance. Due to the complexity of handling varying workloads and

bursty traffic, configuring such parameters optimally becomes a challenge. In this paper, we describe an observation-based approach for self-

managing web servers that can adapt to changing workloads while maintaining the QoS requirements of different classes. In this approach,

the system state is monitored continuously and parameter values of various system resources—primarily the accept queue and the CPU—are

adjusted to maintain the system-wide QoS goals. We implement our techniques using the Apache web server and the Linux operating system.

We first demonstrate the need to manage different resources in the system depending on the workload characteristics. We then experimentally

demonstrate that our observation-based system monitors such as workload changes and adjusts the resource parameters of the accept queue

and CPU schedulers in order to maintain the QoS requirements of the different classes.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Web server; Self-managing; Dynamic resource allocation

1. Introduction

1.1. Motivation

Current Web applications have evolved from simple file

browsing to complex tools for commercial transactions,

online shopping, information gathering and personalized

service. To accommodate this diversity, Web servers have

evolved into complex software systems. Web servers today

perform a variety of tasks such as (a) dynamic HTML

generation, (b) personalized page assembly using scripting

languages (e.g. JSP), (c) SSL processing for secure

transmission, (d) persistent HTTP protocol processing, to

reduce connection setup over-heads and improve end-user

performance, and (e) communication with the application

server components via servlets. In doing so, the server

interacts in complex ways with the underlying OS

mechanisms that manage resources such as the CPU,

memory, disk and the network interface. Another emerging

trend is the growing popularity of Web hosting services that

collocate multiple Web domains on the same host machine

or a cluster and provide different levels of service to these

domains based on various pricing options. In such

environments, service differentiation and performance

isolation become necessary for efficient operation.

Numerous mechanisms for service differentiation and

performance isolation have been proposed in the literature.

Such mechanisms for Web servers include QoS-aware

extensions for admission control [1], SYN policing and

request classification [2], accept queue scheduling [3], and

CPU scheduling [4]. These mechanisms enable a Web

server to differentiate between requests from different

classes and provide class-specific guarantees on perform-

ance (for instance, by providing preferential treatment to

Computer Communications 29 (2006) 1174–1188

www.elsevier.com/locate/comcom

0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.07.003

* An earlier version of this article appeared in the Proceedings of the

Tenth International Workshop on Quality of Service (IWQoS 2002), Miami

Beach, FL, May 2002.
* Corresponding author.

E-mail addresses: chandra@cs.umn.edu (A. Chandra), ppradhan@us.

ibm.com (P. Pradhan), tewarir@us.ibm.com (R. Tewari), ssahu@us.ibm.

com (S. Sahu), shenoy@cs.umass.edu (P. Shenoy).

http://www.elsevier.com/locate/comcom


users who are purchasing items at an e-commerce site over

users who are merely browsing, or by providing better

service to institutional investors over individual investors at

a financial site). One limitation of these QoS mechanisms is

that they rely on an external administrator to correctly

configure various parameter values and set policies on a

system-wide basis. Doing so not only requires a knowledge

of the expected workload but also a good understanding of

how various operating system and Web server configuration

parameters affect the overall performance. Thus, while these

QoS mechanisms undoubtedly improve performance, they

also exacerbate the problems of configuration and tuning—

each mechanism provides one or more tunable ‘knobs’ that

the system administrator needs to deal with. More

importantly, these mechanisms are not independent of one

another—depending on the configuration, each mechanism

can have repercussions on the behavior of others, which

further complicates the configuration process. Furthermore,

past studies have made contradictory claims about the utility

and benefits of these mechanisms. For instance, one recent

study has claimed that the (socket) accept queue is the

bottleneck resource in Web servers [3], while another has

claimed that scheduling of requests on the CPU is the

determining factor in Web server performance [4]. Thus, it

is not evident a priori as to which subset of QoS mechanisms

should be employed by a Web server and under what

operating regions.

The increasing complexity of the Web server architec-

ture, the dynamic nature of Web workloads [5,6], and the

interactions between various QoS mechanisms makes the

task of configuring and tuning modern Web servers

exceedingly complex. It has been argued that the more

complex the system, the greater are the chances of a mis-

configuration and sub-optimal performance [7,8]. To

address this problem, in this paper, we develop an adaptive

architecture to make Web servers self-managing. By self-

managing, we mean mechanisms to automate the tasks of

configuring and tuning the Web server so as to maintain the

QoS requirements of the different service classes. The

emphasis on manageability of computing systems has

gained momentum in recent years with the ever increasing

complexity of these systems—in fact, several researchers

have argued that, in today’s environments, the problems of

manageability, availability and incremental growth have

overshadowed that of the traditional emphasis on perform-

ance [9,10].

1.2. Research contributions

This paper focuses on the architecture of a self-managing

Web server that supports multiple QoS classes—a scenario

where multiple virtual servers run on a single physical

server or where certain classes of customers are given

preferential service. Assuming such an architecture, we

make three key contributions in this paper. (1) We conduct

an experimental study using the Apache Web server to

identify bottleneck resources for different Web workloads;

our study illustrates how the bottleneck resource can vary

depending on the nature of the workload and the operating

region. (2) Based on the workloads in our study, we identify

a small subset of resource control mechanisms—the

incoming request queue scheduler and the CPU share-

based scheduler—that are likely to provide the most benefits

in countering the performance degradation. (3) We then

present an observation-based technique to automate the

tasks of configuring and tuning of the parameters of these

OS mechanisms. A key feature of this technique is that it

can handle multiple OS resources in tandem. Our

architecture consists of techniques to monitor the workload

and to adapt the server configuration based on the observed

workload. The adaptation system can adjust to: (i) a change

in the request load, (ii) the QoS requirements of the classes,

(iii) the workload behavior, and (iv) the system capacity.

Since the system dynamically monitors and adjusts the

parameters it makes no underlying assumption of the

workload characteristics and the parameter behaviors.

We implement our techniques into the Apache Web

server on the Linux operating system and demonstrate its

efficacy using an experimental evaluation. Our results show

that we can adjust dynamically to a change in workload, a

change in response time goal and a change in the type of

workload.

The rest of this paper is structured as follows. Section 2

presents our experimental study to determine the bottle-

necks in the Apache request path. Section 3 discusses the

architecture and kernel mechanisms used to support

multiple classes of Web requests. Section 4 presents our

framework to configure and tune the Web server. Section 5

presents the results of our experimental evaluation. Section

6 discusses related work, and finally, Section 7 presents our

conclusions.

2. Analyzing the bottlenecks in web request processing

In this section, we examine the bottlenecks encountered

in the processing of Web requests. We use Apache as a

representative example of a Web server and subject it to a

variety of different workloads. For each workload, we

determine the bottlenecks in the request path at different

operating regions. In what follows, we first present a brief

overview of the software architecture employed by Apache

before presenting our experimental results.

2.1. Architecture of the Apache Web Server

Apache employs a process-based software architecture.

Apache spawns a pool of child processes at startup time, all

of which listen on a common socket (typically, port 80). A

newly arriving request is handed over to one of the children

for further processing; the process rejoins the pool after it is

done servicing the request and waits for subsequent

A. Chandra et al. / Computer Communications 29 (2006) 1174–1188 1175



Download	English	Version:

https://daneshyari.com/en/article/449861

Download	Persian	Version:

https://daneshyari.com/article/449861

Daneshyari.com

https://daneshyari.com/en/article/449861
https://daneshyari.com/article/449861
https://daneshyari.com/

