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analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as,
by default, they hold all other parameters fixed at baseline values. Using techniques described within
we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties
Keywords: . can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and
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1. Introduction

Systems biology is the study of the interactions between the
components of a biological system, and how these interactions give
rise to the function and behavior of the system as a whole. The
systems biology approach often involves the development of
mathematical or computer models, based on reconstruction of a
dynamic biological system from the quantitative properties of its
elementary building blocks. Building mathematical and computa-
tional models is necessary to help decipher the massive amount of
data experimentalists are uncovering today. The goal of the systems
biologist or modeler is to represent, abstract, and ultimately
understand the biological world using these mathematical and
computational tools. Experimental data that are available for each
system should guide, support, and shape the model building
process. This can be a daunting task, especially when the
components of a system form a very complex and intricate network.

Paraphrasing Albert Einstein, models should be as simple as
possible, but not simpler. A parsimonious approach must be
followed. Otherwise, if every mechanism and interaction is
included, the resulting mathematical model will be comprised
of a large number of variables, parameters, and constraints, most
of them uncertain because they are difficult to measure
experimentally, or are even completely unknown in many cases.
Even when a parsimonious approach is followed during model
building, available knowledge of phenomena is often incomplete,
and experimental measures are lacking, ambiguous, or contra-
dictory. So the question of how to address uncertainties naturally
arises as part of the process. Uncertainty and sensitivity (US)
analysis techniques help to assess and control these uncertainties.

Uncertainty analysis (UA) is performed to investigate the
uncertainty in the model output that is generated from uncertainty
in parameter inputs. Sensitivity analysis (SA) naturally follows UA
as it assesses how variations in model outputs can be apportioned,
qualitatively or quantitatively, to different input sources (Saltelli
et al., 2000). In this work we review US analysis techniques in the
context of deterministic dynamical models in biology, and propose
a novel procedure to deal with a particular stochastic, discrete type
of dynamical model (i.e. an agent-based model—ABM").

By deterministic model, we mean that the output of the model
is completely determined by the input parameters and structure
of the model. The same input will produce the same output if the
model were simulated multiple times. Therefore, the only
uncertainty affecting the output is generated by input variation.
This type of uncertainty is termed epistemic (or subjective,
reducible, type B uncertainty; see Helton et al., 2006). Epistemic
uncertainty derives from a lack of knowledge about the adequate
value for a parameter/input/quantity that is assumed to be
constant throughout model analysis. In contrast, a stochastic
model will not produce the same output when repeated with the
same inputs because of inherent randomness in the behavior
of the system. This type of uncertainty is termed aleatory
(or stochastic, irreducible, type A; see Helton et al., 2006). This
distinction has been and still is an area of interest and study in the

! IBM = Individual Based Modeling in fields like ecology.

engineering and risk assessment community (see Apostolakis,
1990; Helton, 1997; Helton et al., 2007; Parry and Winter, 1981;
Pate’-Cornell, 1996).

Many techniques have been developed to address US analysis:
differential analysis, response surface methodology, Monte Carlo
(MC) analysis, and variance decomposition methods. See Iman
and Helton, (1988) and Saltelli et al. (2000) for details on each of
these approaches and Cacuci and lonescu-Bujor (2004), Draper
(1995), Helton (1993) and Saltelli et al. (2005) for more general
reviews on US analysis. Here we briefly illustrate the most
popular, reliable, and efficient UA techniques and SA indexes. In
Section 2, we describe two UA techniques: a MC approach and
Latin hypercube sampling (LHS). In Section 3, we describe two SA
indexes: partial rank correlation coefficient (PRCC) and extended
Fourier amplitude sensitivity test (eFAST): PRCC is a sampling-
based method, while eFAST is a variance-based method. In Section
4, we perform US analysis on both new and familiar deterministic
dynamical models (quantifying epistemic uncertainty) from
epidemiology and immunology, and discuss results. Section 5
presents an ABM, where we suggest a method to deal with the
aleatory uncertainty that results from the stochasticity embedded
in the model structure, to facilitate the use of PRCC and eFAST
techniques. We use Matlab (Copyright 1984-2006 The Math-
Works, Inc., Version 7.3.0.298 R2006Db) to solve all the differential
equation systems of Section 4 and to implement most of the
US analysis functions described throughout the manuscript
(available on our website, http://malthus.micro.med.umich.edu/
lab/usanalysis.html).

2. Uncertainty analysis

Input factors for most mathematical models consist of
parameters and initial conditions for independent and dependent
model variables. As mentioned, these are not always known with a
sufficient degree of certainty because of natural variation, error in
measurements, or simply a lack of current techniques to measure
them. The purpose of UA is to quantify the degree of confidence in
the existing experimental data and parameter estimates. In this
section we describe the most popular sampling-based approaches
used to perform UA, MC methods, and their most efficient
implementation, namely the LHS technique.

2.1. Monte Carlo simulation

MC methods are popular algorithms for solving various kinds
of computational problems. They include any technique of
statistical sampling employed to approximate solutions to
quantitative problems. A MC simulation is based on performing
multiple model evaluations using random or pseudo-random
numbers to sample from probability distributions of model
inputs. The results of these evaluations can be used to both
determine the uncertainty in model output and perform SA.
A large body of literature exists on the use of expert review
processes to characterize epistemic uncertainty associated with
poorly known model parameters (see for example Cooke, 1991;
Evans et al., 1994; Hora and Iman, 1989; McKay and Meyer, 2000).
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