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The one-third law of evolutionary dynamics
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Abstract

Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent

fitness. Recently, a ‘‘one-third law’’ of evolutionary dynamics has been described, which states that strategy A fixates in a B-population

with selective advantage if the fitness of A is greater than that of B when A has a frequency 1
3
. This relationship holds for all evolutionary

processes examined so far, from the Moran process to games on graphs. However, the origin of the ‘‘number’’ 1
3
is not understood. In this

paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an

individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-

third law implies that the average Malthusian fitness of A is positive.
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1. Introduction

Many complex traits of organisms are inherently advan-
tageous, but provide a selective advantage only in terms of
interactions between the organisms themselves. The canoni-
cal example is the trait of cooperation, whose fitness
depends on the proportion of the population (or frequency)
which cooperates (Nowak, 2006b). Given the importance of
such interactive traits, it is of interest to understand how
they evolve in a population and when they are advanta-
geous. Evolutionary game theory provides the framework
for studying the dynamics of frequency-dependent selection
(Von Neumann and Morgenstern, 1944; Weibull, 1995;
Hofbauer and Sigmund, 1998; Gintis, 2000; Cressman, 2003;
Nowak and Sigmund, 2004; Nowak, 2006a).

Unlike in infinite populations, the game dynamics in
realistic finite populations are susceptible to demographic
stochasticity, hence they are described by stochastic
processes rather than by deterministic equations (Maynard

Smith, 1988; Schaffer, 1988; Kandori et al., 1993; Ficici
and Pollack, 2000; Komarova and Nowak, 2003; Nowak
et al., 2004; Taylor et al., 2004, 2006; Wild and Taylor, 2004;
Imhof et al., 2005; Fudenberg et al., 2006; Nowak, 2006a;
Ohtsuki and Nowak, 2006; Ohtsuki et al., 2006, 2007; Traulsen
and Nowak, 2006; Traulsen et al., 2006a, 2006c, 2007a).
In finite-sized populations it is possible that an advanta-
geous mutant goes extinct. It is also possible that a dele-
terious mutant by chance fixates in the population. Thus,
even if traits with frequency-dependent fitness seems
advantageous in infinite populations, it is a priori not
clear whether they can take over in finite-sized populations,
and vice versa. In Nowak et al. (2004), a natural defini-
tion of an advantageous mutation was introduced, which
takes into account the stochastic nature of reproduction.
The fixation probability of strategy A, denoted by rA, is
defined as the probability that the offspring lineage of a
single A-mutant invading a population of ðN � 1Þ many B-
individuals eventually takes over the whole population.
The fixation probability of a neutral mutant is equal to the
reciprocal of the population size, 1=N. Therefore, strategy
A is deemed advantageous if the fixation probability, rA, is
greater than 1=N.
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If selection is weak, the likelihood of fixation rA can be
computed explicitly. In this case, Nowak et al. (2004) found
that strategy A is advantageous if the fitness of an A-player
is higher than the fitness of a B-player when the frequency
of A is 1

3
. This has been dubbed the one-third law. We do

not have, however, an intuition of why such a universal law
exists, which holds for a variety of update rules and
population structure studied so far. In this paper, we
provide an intuition of the one-third law.

Let us consider a game with two strategies, A and B. The
payoffs of A versus A, A versus B, B versus A, and B versus
B, are denoted by a, b, c, and d, respectively. The payoff
matrix is thus

A B

A

B

a b

c d

� �
. (1)

The payoffs of players are dependent on the abundance of
each strategy in the population. In particular, if there are i

many A-players and ðN � iÞ many B-players and random
pairwise interactions, then the expected payoffs of A and B

are (excluding self-interaction)

Fi ¼ a
i � 1

N � 1
þ b

N � i

N � 1
,

Gi ¼ c
i

N � 1
þ d

N � i � 1

N � 1
. ð2Þ

To account for the contribution of the game’s payoff to the
fitness of players, Nowak et al. (2004) introduced a
‘‘selection intensity parameter’’, 0pwp1, such that the
fitness of A and B players are, respectively, given by

f i ¼ 1� wþ wF i,

gi ¼ 1� wþ wGi. ð3Þ

At zero selection intensity, the game has nothing to do with
one’s fitness. At the other extreme, w ¼ 1, fitness equals
payoff. In the replicator dynamics of infinite populations,
the selection intensity cancels out so that it has no effect on
the evolutionary outcome. However, it is known that it
crucially matters in finite populations (Traulsen et al.,
2007b).

To address evolution in this approach, we now consider
that reproduction and replacement occur according to
some fitness-dependent rule. Nowak et al. (2004) studied
the Moran process with frequency-dependent selection
(details will be explained in the following sections). In the
limit of weak selection, Nw51, they found that A is an
advantageous mutant (i.e. rA41=N) if and only if

ðN � 2Þaþ ð2N � 1Þb4ðN þ 1Þcþ ð2N � 4Þd. (4)

For large N, this condition leads to

aþ 2b4cþ 2d. (5)

Suppose each strategy is the best reply to itself, which
means a4c and bod. Here a single A mutant is initially at
a disadvantage. The deterministic replicator equation
(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998)

for infinite populations tells us that a unique unstable
equilibrium exists at a frequency of strategy A given by
x� ¼ ðd � bÞ=½ðd � bÞ þ ða� cÞ�. We can now write the one-
third law of evolutionary dynamics in the form (Nowak
et al., 2004)

x�o1
3
. (6)

Namely, if the basin of attraction of strategy B is less than
one-third then an A-mutant overcomes its initial disadvan-
tage and fixates in the population with selective advantage
(Fig. 1). Interestingly, the one-third law (6) translates the
condition of advantageous mutation in finite populations
into a condition on frequency-dependent fitness in infinite
populations. The one-third law holds for the Moran
process (Nowak et al., 2004), for the Wright–Fisher process
(Lessard, 2005; Imhof and Nowak, 2006), for pairwise
comparison updating (Traulsen et al., 2006b), for Cannings
exchangeable models that are in the domain of application
of Kingman’s coalescent (Lessard and Ladret, 2007), and
for games on graphs (Ohtsuki et al., 2006, 2007) with
modified payoff matrices.
We study the Moran process (main text) and the

Wright–Fisher process (Appendix A). We calculate the
mean effective sojourn time at each state of the underlying
stochastic process. We show that along the path of an
invasion attempt, starting with a single A-mutant and
ending at either extinction or fixation, an individual on
average plays the game with B-players twice as often as
with A-players. In other words, the number 1

3
represents the

proportion of A-players in all the opponents that one
meets. This result leads directly to inequality (5).
This paper is structured as follows. In Section 2, we

study the dynamics of fixation under neutral drift and show
that the neutral mutants play with resident players on
average twice as often as with other neutral mutants. In
Section 3 we generalize the result for non-zero intensity of
selection, leading to the one-third rule for frequency-
dependent selection. We offer a discussion in Section 4.
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Fig. 1. The one-third law. Both A and B are Nash equilibria of the game.

Top: If the location of the unstable equilibrium in the replicator equation

is x�o 1
3
then the fixation probability of A is greater than 1=N in finite

populations. Bottom: If x�4 1
3
holds, the fixation probability, rA, is less

than 1=N. All these results hold for weak selection such that Nw51 is

satisfied.
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