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A new necessary condition on interaction graphs for multistationarity
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Abstract

We consider a dynamical system, described by a system of ordinary differential equations, and the associated interaction graphs, which

are defined using the matrix of signs of the Jacobian matrix. After stating a few conjectures about the role of circuits in these graphs, we

prove two new results relating them to the dynamic behaviour of the system: a sufficient condition for qualitative unstability, and a

necessary condition for the existence of several stationary states. These results are illustrated by examples of regulatory modules in two

variables, such as those occurring in biological networks.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study the qualitative properties of a
dynamical system, described by a system of ordinary
differential equations. For that purpose, we consider the
interaction graphs attached to the system. These are
defined using the signs of the entries of the Jacobian
matrix. Several conjectures have been stated and/or proven
in the past which relate circuits in these graphs to the
behaviour of the corresponding dynamical system. We add
here two new results. One is about the stability of a
stationary state and the other is a new criterion for the
existence of several stationary states.

Our interest in these results comes from biology: multi-
stationarity in cellular networks can be viewed as a rationale
for decision making and differentiation. This is explained in
the next section, where we discuss how our problem
originated from biological considerations. Then, after
introducing some definitions, we formulate four conjectures
relating circuits to the qualitative behaviour of a dynamical
system. We discuss an example illustrating these conjectures
and we summarize what is known about them.

The third section contains the statement of our main
results. Theorem 1 gives a sufficient condition for a
stationary point to be (strongly) unstable, and Theorem 2
gives a necessary condition for the existence of several
nondegenerate stationary points. These theorems are
proved in the Appendix. The case of two variables is
discussed in detail.
In the fourth section we show with examples that the

hypotheses of Theorem 2 cannot be weakened. Finally, we
discuss in Section 5 how our results can be applied to a
positive feedback system similar to those encountered in
developmental Biology.

2. Some conjectures in nonlinear dynamics

2.1. Biological background

Epigenetic differences are those differences that are
transmissible from cell to cell generation in the absence of
any genetic difference. It has become clear for some time
(Briggs and King, 1952; Wilmut et al., 1997) that with few
exceptions all the cells of an organism contain all the genes
of that organism. Thus, cell differentiation is essentially an
epigenetic process.
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In a short but historical note, Delbrück (1949) men-
tioned (in other words) that epigenetic differences, includ-
ing those involved in cell differentiation, can be understood
in terms of a more general process, namely multistationa-
rity. Multistationarity takes place when a system displays
multiple steady states.

This urged us to identify the formal requirements of
multistationarity and other nontrivial behaviour. We soon
realized that the common point between all the biological
systems that display multistationarity (e.g. Novick and
Weiner, 1957; Cohn and Horibata, 1959; Monod and
Jacob, 1961; Eisen et al., 1967; Kauffman, 1973) is the
presence of a positive circuit in their underlying logic. In
fact all these examples imply a switch from a ‘‘rest’’ state to
an alternative latent state and thus point to the existence of
a cellular memory based on a positive circuit. It was
subsequently concluded (Thomas, 1981) that the presence
of a positive circuit is not simply a convenient way to
realize multistationarity, but is in fact a necessary condi-
tion for its occurrence. This conjecture was submitted to
formal proofs in Plahte et al. (1995), Snoussi (1998), Gouzé
(1998), Cinquin and Demongeot (2002) and Soulé (2003).

Of special relevance for the mechanisms of cell differ-
entiation is the fact that a gene whose expression is under
direct or indirect positive control of its own product can be
switched on lastingly by a transient signal. This explains
that during cell differentiation a gene can be switched on by
the product of another gene and remains on after the
disappearance of this product. On the other hand, in order
to account for various cell types in terms of multiple steady
states, one has to account for many steady states. As
discussed in Kaufman and Thomas (1987) and Thomas
and Richelle (1988), many regulatory interactions (and
their composition) are sigmoid (or stepwise) in shape and a
positive circuit thus usually results in no more than three
steady states, two of which can be stable. However, m

positive circuits can generate up to 3m steady states, 2m of
which can be stable. Thus, eight genes under positive auto-
control might suffice to generate 28 ¼ 256 cell types. More
generally, many steady states (and thus many potential cell
types) can be generated by several positive circuits.

As briefly mentioned above, positive circuits are involved
in cellular memory. For more recent examples, see, e.g.
Acar et al. (2005) and Sha et al. (2003). Moreover, one can
reason that whenever a set of neurons are connected into a
positive circuit, this set will usually persist in a rest state,
but any signal that can move it away from this state will
lead it to the alternative complementary state of the circuit
(Demongeot et al., 2000; Tonnelier et al., 1999). In other
words, such a simple network can evocate a latent state
that is kept as a memory. In the immune system as well,
differentiation and memory can be understood in terms of
positive circuits between the various types of cells involved
(see Kaufman et al., 1985; Kaufman and Thomas, 1987;
Segel, 1998; Yates et al., 2004).

Negative circuits also play a fundamental role in biology.
That homeostasis (already recognized by Claude Bernard

as elasticity) operates, with or without oscillations, like a
thermostat or a Watt regulator, has been understood for
many years, and many authors (e.g. Szekely, 1965) have
suggested an implication of what we now call negative

circuits in these processes. A further step consisted of
conjecturing that negative circuits are not only involved in
homeostasis and periodicity, but are in fact a necessary
condition of this type of behaviour (Thomas, 1981).
Although all biological processes are complex and

involve many variables, essential qualitative features of
these processes can usually be understood in terms of a
small number of crucial variables. This view is strongly
supported by the observation that extremely complex
behaviour can arise from simple combinations of positive
and negative circuits. In particular, we will deal with small
modules (or ‘‘regulons’’) whose consideration can be of
interest in various domains. For example, it has become
clear recently that such complex behaviours as determinis-
tic chaos can take place in the presence of one positive and
one negative circuit, and even in the presence of a single
circuit, provided this circuit can be positive or negative
depending on the values of relevant variables (Thomas,
1999).

2.2. Definitions

As explained in the previous section, the biological
examples led us to propose several mathematical con-
jectures relating the behaviour of a dynamical system to the
topology of its interaction graph. To state them precisely,
we first need to introduce some terminology.
Given a positive integer n, we consider a differentiable

map F : Rn ! Rn, i.e. a collection F ¼ ðf 1; . . . ; f nÞ of n

differentiable maps f iðx1; . . . ;xnÞ, 1pipn (see 3.1 below).
We are interested in the dynamical system

dx

dt
¼ F ðxÞ, (1)

where x ¼ ðx1ðtÞ; . . . ;xnðtÞÞ is a trajectory in the n-dimen-
sional Euclidean space.
The interaction graph GðxÞ of F at the point x 2 Rn is the

finite oriented graph with f1; . . . ; ng as set of vertices and
such that there is a positive (resp. negative) arrow from j to
i if and only if the partial derivative ðqf i=qxjÞðxÞ is positive
(resp. negative). Each edge in GðxÞ is thus both oriented
and endowed with a sign. The variable x is viewed as the
phase space location of the graph GðxÞ.
A circuit in the graph GðxÞ is a sequence of distinct

vertices i1; i2; . . . ; ik such that there is an edge from ia to
iaþ1, 1papk � 1, and from ik to i1.
The sign of a circuit is the product of the signs of its

edges.
A circuit is thus determined by a set of nonzero

coefficients in the Jacobian matrix JðxÞ ¼ ððqf i=qxjÞðxÞÞ

whose rows and columns are in cyclic permutation. Its sign
is the sign of the product of these coefficients.
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