
Computer Communications 70 (2015) 28–39

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Scalable signaling protocol for Web real-time communication based on a

distributed hash table

Jung Ha Paik, Dong Hoon Lee∗

Department of Information Security, Korea University, Seoul, Republic of Korea

a r t i c l e i n f o

Article history:

Received 23 April 2014

Revised 21 May 2015

Accepted 27 May 2015

Available online 3 June 2015

Keywords:

WebRTC

Distributed hash table

Signaling protocol

Peer-to-peer

a b s t r a c t

Web real-time communication (WebRTC) provides browser-to-browser communications without installing

any plug-in. In WebRTC, peers have to prepare their communication session through a signaling protocol

which coordinates peers and exchanges Session Description Protocol (SDP) message between two peers. The

problem is that the most well known signaling method cannot provide the scalability because the method re-

lies on only single server. To overcome the problem, this paper presents a scalable WebRTC signaling protocol.

The main idea is that each peer forms a peer-to-peer topology by structuring relevant WebRTC connections

with each other and then sends signals across those connections. The central server needs to handle only a

few connection establishments for newly joining peers. The rest of the signaling process can be performed

by peers. We define and justify such a protocol including a bootstrap method, a stabilization scheme, and

peer lookup. The procedures are designed to be suitable for WebRTC connections and to be resilient against

the churn condition. Furthermore, we implement the proposed protocol in pure JavaScript to show that it is

realizable. The performance of the implementation is practical, with signaling latency averaging 0.5 s when

the number of peers is 1000. Each peer still correctly locates the other peers even when the network is very

congested.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Internet has encouraged people to communicate with each

other, changing their patterns of communication through Web ser-

vices. Therefore, modern Web browsers are not limited to brows-

ing the Internet and should support various types of Web appli-

cations including peer-to-peer communication. Historically, because

Web browsers could only communicate with Web servers, Web ap-

plications supporting client interaction only communicated through

central servers, which was inefficient. A cost-effective method of in-

teracting using Web browsers is to connect one browser directly to

another, enabling real-time communication (RTC). For the past few

years, such transparent connection within the browser context has

been one of the major challenges for Web applications. Web real-time

communication (WebRTC) aims to provide open-access, high-quality

RTC technology for Web developers. Before WebRTC, Web applica-

tions on which clients collaborate, such as video conferencing, voice

chats, and messenger services, have only been available through pro-

prietary plug-ins such as the Adobe Flash Socket.

∗ Corresponding author. Tel.: +82232904892.

E-mail addresses: jungha.paik@gmail.com (J.H. Paik), donghlee@korea.ac.kr (D.H.

Lee).

The presence of WebRTC enables peer-to-peer communication

without plug-ins [1]. WebRTC provides the substrate for adding this

communication feature to Web applications with minimal effort and

reliability. That is, Web application developers can offer features al-

lowing connectivity and data exchange among clients by simply us-

ing HyperText Markup Language (HTML) and common JavaScript APIs

within their Web applications. The standards for WebRTC APIs are set

by the World Wide Web Consortium (W3C) [2], and the correspond-

ing internal protocol suite is defined by the Internet Engineering Task

Force (IETF) Working Group RTCWeb [3]. Major browser vendors have

already employed the latest standard version of WebRTC in their Web

browsers.1

To open their connection, WebRTC peers need to initi-

ate RTCPeerConnection and construct the connection using

RTCPeerConnection APIs. However, WebRTC peers face a problem

when establishing the first WebRTC connection. Unlike a conven-

tional connection such as the Transmission Control Protocol/Internet

Protocol (TCP/IP), in WebRTC, peers cannot locate arbitrary peers

by themselves. In TCP/IP communication one assumes that a source

client knows a destination client’s address (e.g., IP and port address)

and that the destination client is waiting for an incoming socket

1 Currently, WebRTC is stable on Google Chrome Desktop 25+, Chrome Android 29+,

Mozilla Firefox 14+, and Opera 18+.

http://dx.doi.org/10.1016/j.comcom.2015.05.013

0140-3664/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comcom.2015.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.05.013&domain=pdf
mailto:jungha.paik@gmail.com
mailto:donghlee@korea.ac.kr
http://dx.doi.org/10.1016/j.comcom.2015.05.013


J.H. Paik, D.H. Lee / Computer Communications 70 (2015) 28–39 29

connection. Under these conditions, the source can access the

destination so that they communicate over a bidirectional socket

stream. By contrast, connecting two peers in WebRTC is considerably

different. The basic architecture of WebRTC applications requires an

additional entity, usually called the signaling server, to deliver the

signal between the two parties. A source peer who wants to connect

with a destination peer requests to send a message including the

source’s network address and the type of interaction to the server,

and then the server delivers this message to the specific destination.

Similarly, the destination generates its message and the signaling

server delivers the destination’s message to the original source peer.

Then, the two peers can negotiate a communication session based on

the exchanged messages.

Signaling is a common process used in modern network services

such as SIP [4]; however, WebRTC does not mandate the use of any

particular signaling method [1], although a central server is usually

used to run a signaling protocol. That is, every WebRTC peer connects

to the central server and then the server relays the peers signal. Thus

far, several examples of WebRTC signaling in practice have followed

this approach. Further, very few researches consider the possibility of

combining SIP with a WebRTC service [5]. However, the feasibility of

these solutions has not yet been proven in a practical environment,

which has to include a large number of peers who usually rely on

a single signaling server. In a WebRTC application involving a large

number of peers, all participating peers must be bound to a unique

signaling server thus the signaling server coordinates a large number

of peers at any given time. This frequently causes high latency and a

single point of failure. To resolve these problems, we believe the best

approach is to provide scalability for the WebRTC signaling protocol

by applying a Distributed Hash Table (DHT) to the mechanism of peer

coordination.

In this paper, we present PeerConnecion over DataChannel (POD).

POD provides a WebRTC signaling protocol via RTCDataChannel, re-

quiring minimal effort by the central server. Signaling through peer

connections requires a certain coordination mechanism. The heart of

our protocol is that the peers participating in the WebRTC applica-

tion maintain structural RTCDataChannel connections based on a DHT

so that any peers can connect to any others using underlying con-

nections bypassing the central server. This makes WebRTC signaling

more reliable and scalable even when a large number of peers are on

the network.

The contribution of this paper is as follows. We define a POD

protocol that includes peer lookup (signaling) based on Chord [6,7].

It is easy to conceive an idea such as coordinating peers across

RTCDataChannel, but to make it work is difficult. Besides, the de-

sign principle of POD is based on the fact that an established

RTCDataChannel between two peers can be utilized mutually as a

communication channel whereas Chord and most Chord variants

only consider one-way channels. POD contains bootstrap and sta-

bilization methods that accord closely with the characteristics of

RTCDataChannel. We further justify our methods in a nonadversarial

model. Moreover, we implement all the POD functionalities in pure

JavaScript to show that POD can be applied in the real world. Devel-

opers can easily deploy POD as their WebRTC signaling method by

simply importing the POD scripts into their applications. The size of

our POD protocol is approximately 30 kb and it needs to be down-

loaded once. This does not burden clients offering modern network

service. Finally, our evaluation results show that the signaling latency

and data overhead in each peer are practical. The performance time to

establish a connection averages about 0.5 s when 1000 peers are in-

volved on the network. In addition, POD is resilient against the churn

condition [8]. Even if each peer continuously joins and leaves the sig-

naling network, the signaling method still reliably locates the spe-

cific targets. While half of the peers leave and rejoin the network ev-

ery minute, two attempts to establish a connection are required on

average.

The remainder of the paper is organized as follows. In Section 2,

we describe the background on related technology and research. In

Section 3, we describe POD protocols and prove the performance of

POD procedures. In Section 4, we present the principals of POD imple-

mentation. In Section 5, we analyze POD, and in Section 6, we show

the results of our POD evaluation. Section 7 concludes the paper.

2. Background

2.1. WebRTC and signaling

To better understand WebRTC architecture, in this section, we

briefly describe the manner in which a common WebRTC service sce-

nario could be developed. The scenario is one in which two peers es-

tablish an RTCPeerConnection along with an RTCDataChannel session

so that they can transfer the generic data to each other over the un-

derlying session. Basically, the WebRTC application utilizes at least

three entities. First, as an application provider, a Web server provides

the WebRTC applications (via an HTTP service). The WebRTC applica-

tion is written in a JavaScript language with the core WebRTC APIs [2].

Second, a signaling server is operated to relay one’s WebRTC signal to

another. Finally, there are peers who participate in the application

service. Peers are divided into two classes: offerers and answerers.

The offerer is a peer who initiates the WebRTC connection to another

peer. On the opposite side, there is an answerer who is asked for the

connections from the offerer. The offerer previously needs to learn

about the answerer’s information which is used for designating it.

A common scenario is that the offerer is assumed to know the an-

swerer’s original identifier (e.g. an e-mail address) and then requests

a connection through a signaling server. If the answerer is on-line,

or equivalently, connected with the signaling server, they can make a

WebRTC connection through the server.

After peers download a WebRTC application from the Web

server, they can establish a WebRTC connection as follows. The

offerer first begins to initialize an RTCPeerConnection object. In

RTCPeerConnection, a createDataChannel method is used to create

an RTCDataChannel object. When an RTCDataChannel on the offerer’s

side is generated, the offerer invokes createOffer in member meth-

ods of RTCPeerConnection, thereby enabling createOffer to return

an offerer’s Session Description Protocol (SDP) message [9,10]. To

make a connection, the offerer first generates the SDP-offer mes-

sage by calling createOffer and then needs to send the message to

a specific answerer through a certain signaling method for which the

signaling server is responsible. Once the SDP-offer message reaches

the answerer, the answerer also initiates its RTCPeerConnection in-

stance to accept the request. The answerer installs the SDP-offer mes-

sage into its RTCPeerConnection and then creates an SDP-answer

message by calling createAnswer. The signaling server also hands this

message over to the offerer’s side. The SDP-offer/answer messages in-

clude a set of attributes indicating the client’s session information

such as the version, bandwidth, etc. [9]. After two peers exchange

SDP-offer/answer messages, they can initialize their session. In the

meantime, RTCPeerConnection of both the offer and answer starts

gathering the address of the potential contact point for the recipi-

ent, which is called the Interactive Connectivity Establishment (ICE)

candidate. The ICE candidate messages from the offerer and answerer

sides also need to be exchanged through the signaling server. Based

on the exchanged ICE candidates, they can actually contact each other

and establish the session. When two peers establish their session,

their browsers internally operate the protocol described in the ICE

protocol [11,12]. ICE allows two peers in heterogeneous network con-

ditions to accomplish the best transport for communication. ICE uses

Session Traversal Utilities for NAT (STUN) [13] and Traversal Using

Relays around NAT (TURN) [14] to establish the session. After the ses-

sion is established, the offerer and answerer acquire RTCDataChannel
objects for each other. RTCDataChannel defines the data-sending API



Download English Version:

https://daneshyari.com/en/article/449965

Download Persian Version:

https://daneshyari.com/article/449965

Daneshyari.com

https://daneshyari.com/en/article/449965
https://daneshyari.com/article/449965
https://daneshyari.com

