
Computer Communications 70 (2015) 40–53

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

On the performanc of KVM-based virtual routers

Luca Abeni a,∗, Csaba Kiraly b, Nanfang Li c, Andrea Bianco d

a DISI – University of Trento, Via Sommarive 5, Trento (TN), Italy
b Bruno Kessler Foundation, Via Sommarive 18, Trento (TN), Italy
c Embrane, Inc., 2350 Mission College Blvd, Santa Clara, CA 95054, USA
d Dipartimento di Elettronica e delle Telecomunicazioni, Politecnico di Torino, Torino, Italy

a r t i c l e i n f o

Article history:

Received 31 March 2014

Revised 13 May 2015

Accepted 16 May 2015

Available online 29 May 2015

Keywords:

Software routers

Virtualisation

Data plane performance

a b s t r a c t

This paper presents an extensive experimental evaluation of the layer 3 packet forwarding performance of

virtual software routers based on the Linux kernel and the KVM virtual machine. The impact of various tun-

ing and configuration options on forwarding performance is evaluated, focussing on the mechanism used for

moving data to and from virtual machines, the algorithm used for scheduling the virtual router tasks, the

number of used CPU cores, and the router tasks affinities. The presented results show how to properly config-

ure the virtual router components to improve forwarding performance and the benefits of using appropriate

CPU schedulers. Furthermore, some advanced architectures based on virtual router aggregation are evalu-

ated. The presented experiments show that architectures based on router aggregation can better exploit the

available CPU cores to reach performance not far from the ones obtained by non-virtualised software routers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software routers (SRs), i.e., routers implemented by software run-

ning on commodity off-the-shelf hardware, became in recent years

an appealing solution compared to traditional routing devices based

on custom hardware. SRs’ main advantages include cost (the multi-

vendor hardware used by SRs can be cheap, while custom equip-

ments are more expensive and imply higher training investment),

openness (SRs can be based on open-source software, and thus make

use of a large number of existing applications) and flexibility. Since

the forwarding performance provided by SRs has historically been

an obstacle to their deployment in production networks, recent re-

search works focused on increasing SRs performance by either using

massively parallel hardware such as a GPU to process packets [1], al-

lowing the routing software to directly access the networking hard-

ware (thus eliminating the overhead introduced by the OS kernel) [2],

or using other similar techniques to improve the forwarding perfor-

mance of monolithic routers. An orthogonal approach to improve

SR performance can be based on the aggregation of multiple de-

vices to form a more powerful routing unit like the multistage soft-

ware router [3], Router Bricks [4], and DROP [5]. While by improv-

ing the performance of a single routing device it is possible to reach

the forwarding speed of multiple tens of Gigabit per second [1], the

∗ Corresponding author. Tel.: +39 0461 28 1516.

E-mail addresses: luca.abeni@unitn.it (L. Abeni), kiraly@fbk.eu (C. Kiraly),

nanfang@embrane.com (N. Li), andrea.bianco@polito.it (A. Bianco).

aggregation of multiple routing units can allow the forwarding speed

to scale almost linearly with the number of used devices [3].

As recognised by several researchers [6,7], virtualisation tech-

niques could become an asset in networking technologies, improving

SRs flexibility and simplifying their management. As an interesting

example, the virtual machines (VMs) live migration capability could

be adopted for consolidation purposes and/or to save energy. More-

over, running a SR in a VM allows to dynamically adapt the forward-

ing performance of the (virtual) device to the workload by renting

virtual resources instead of buying new hardware. This feature is es-

pecially useful when the network traffic has a high variance, thus a

high processing power might be necessary only for short periods. Vir-

tualisation can also simplify the SR management, and improve its re-

liability: for example, VMs migration during maintenance periods can

be implemented, and faster reaction to failures should be expected by

booting new VMs on general purpose servers. Finally, virtualisation

improves hardware efficiency because the same physical infrastruc-

ture can be sliced and shared among different tenants.

Obviously, the usage of virtual software routers (VSRs) might in-

crease the complexity of the routing software: for example, the com-

munications between VMs and the physical nodes hosting them

result in complex interactions between hardware and VMs, which

could easily compromise VSR’s performance. This paper focuses on

analysing such interactions to identify and remove various perfor-

mance bottlenecks in the implementation of a VSR. Since the knowl-

edge of the behaviour of software components (routing software, vir-

tual machine software, operating system kernel, etc.) and of their

interaction mechanisms makes this investigation easier, this work

http://dx.doi.org/10.1016/j.comcom.2015.05.005

0140-3664/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comcom.2015.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.05.005&domain=pdf
mailto:luca.abeni@unitn.it
mailto:kiraly@fbk.eu
mailto:nanfang@embrane.com
mailto:andrea.bianco@polito.it
http://dx.doi.org/10.1016/j.comcom.2015.05.005


L. Abeni et al. / Computer Communications 70 (2015) 40–53 41

focuses on an open-source virtualisation environment (KVM, the

Kernel-based Virtual Machine [8]) which permits to easily anal-

yse the VSR behaviour to identify performance bottlenecks. Indeed,

since KVM is tightly integrated into Linux from 2.6.20 on, all the avail-

able Linux management tools can be exploited.

VSR performance can be improved by carefully tuning various sys-

tem parameters such as those related to the mechanisms used to

move data to and from VMs, threads priorities and CPU affinities.

Some preliminary results [9] show that a proper configuration and

optimisation of the virtual routing architecture and the aggregation

of multiple VSRs (as suggested by the multistage software router ar-

chitecture [3]) permit to forward 64 bytes packets at about 1200 kpps

in a commodity PC, close to the physical speed of a Gigabit Ether-

net link. This paper extends the preliminary results starting from a

detailed analysis of the packets forwarding path, which is used to

develop a large number of new experiments to investigate the bot-

tlenecks that should be bypassed to reach the full line rate. Some of

the new experiments investigate the different technologies that can

be used to interface the VMs with the physical hardware, compar-

ing their performance and CPU usage. Then, the impact of the CPU

scheduler on the VSR performance are investigated, showing how a

proper scheduling algorithm (with properly tuned scheduling param-

eters) permits to control the performance of a VSR and to limit its CPU

usage.

The reminder of this paper is organised as follows: Section 2

briefly summarises the virtualisation technologies used in this paper.

Then, Section 3 introduces the so-called monolithic VSR, gives a ba-

sic evaluation of its performance, and shows that the scalability of a

VSR is not affected by virtualisation. Based on these results, Section 4

discusses many optimisation techniques to tune the performance of a

monolithic VSR. Section 5 discusses the problem of clustering multi-

ple VSRs into a single logical routing unit to improve the performance

or the flexibility of a VSR. Some state of the art related works are pre-

sented in Section 6. Finally, Section 7 concludes the paper. Appendix A

shows the detailed packet forwarding lifecycle inside the VSR.

2. Virtualisation technologies

A SR operates both on the data plane (or forwarding plane), where

each packet is handled individually and forwarded towards the next

hop IP router, and on the control plane, where routing tables are

filled based on routing protocol interactions. While some VSRs virtu-

alise only the control plane and directly configure a non-virtualised

data plane, in this work we concentrate on VSRs that virtualise both

planes.

VSR performance is mainly affected by the amount of computa-

tional resources (i.e., CPU power) available on the physical node that

hosts the VSR. Such computational resources are mainly used to pro-

vide data plane operations by:

1. the forwarding/routing code in the SR (named as guest because it

runs inside a VM).

2. the physical machine hosting the VM (named as host), to move

packets among physical interfaces, virtual switches, and guest vir-

tual interfaces.

Control plane operations are less CPU intensive and have less

stringent timing constraints. Therefore, we concentrate on the evalu-

ation of the above described data plane operations.

Several packet processing functions may be available in SRs. Thus,

the amount of CPU time needed to process packets inside the SR may

vary significantly. We can identify SRs used in the access network,

close to end users, typically executing several functions, or SRs in the

core network that mainly focus on high forwarding performance. In

the access, many high layer (4–7) functionalities could be executed

in the SR, including NAT, VPN encryption/decryption, packet filtering

based on different rule sets, etc. Things become even more complex

when QoS comes to the picture. These operations may require sev-

eral CPU cycles, because different SR subsystems need to access and

modify the packets. As a result, the packet processing overhead in-

creases, decreasing the throughput. On the other hand, routers which

only implement layer 3 forwarding are often used in core networks

and in data centres. In this case, packets traverse only a simple and

high-performance forwarding subsystem (that can run in the Linux

kernel, in the Click software, or in other specific software modules).

Obviously, high performance and fast forwarding speed is the key in-

dex to measure the quality of such VSR. This paper focuses on the

study of VSR layer 3 forwarding, showing that a VSR can achieve al-

most line rate in forwarding if appropriate optimisation techniques

are used.

Moving packets between the host and the VM can be executed in

the OS kernel, in a hypervisor, or in a user-space component (typi-

cally, the virtual machine monitor – VMM), depending on the specific

virtualisation architecture. This operation, which is crucial for the

VSR performance, can be performed using different software com-

ponents. This paper considers three different approaches, namely

macvtap, bridge (plus tap), and netmap, analysing their performance

in details.

If the VSR is implemented using a “closed” virtualisation architec-

ture such as VMWare [10], it is not easy to understand how much CPU

time is consumed by the VMM, by the guest, or by the host OS ker-

nel. Hence, in this paper an open-source virtualisation architecture

is used. The two obvious candidates are Xen [11] and KVM [8]. Since

the KVM architecture is more similar to the standard Linux architec-

ture, it has been selected for running the experiments presented in

this paper. KVM is based on i) a kernel module, which exploits the

virtualisation features provided by modern CPUs to directly execute

guest code, and ii) a user-space VMM, based on QEMU [12], which

virtualises the hardware devices and implements some virtual net-

working features.

The most relevant feature for VSRs provided by the user-space

VMM is the emulation of network interfaces, because CPU virtual-

isation is not an issue, as KVM allows guest machine instructions

to run at almost-native speed. When a packet is received, the VMM

reads it from a device file (typically the endpoint of a TAP device)

and inserts it in the ring buffer of the emulated network card (the

opposite happens when sending packets). When emulating a stan-

dard network interface (such as an Intel e1000 card), the VMM moves

packets to/from the guest by emulating all hardware details of a real

network card. This process is time consuming, easily causing poor

forwarding performance, especially when considering small pack-

ets, and/or high interrupt rates. This issue can be addressed by us-

ing virtio-net,1 which does not emulate real hardware but uses a

special software interface to communicate with the guest (that needs

special virtio-net drivers). Thus, the overhead introduced by emu-

lating networking hardware is reduced, and forwarding performance

is improved. The para-virtualised NIC is based on a ring of buffers

shared between the guest and the VMM, which can be used for send-

ing/receiving packets. The guest and the VMM notify (to each other)

when buffers are empty/full, and the virtio-net mechanism is de-

signed to minimise the amount of host/guest interactions (by clus-

tering the notifications, and enabling data transfer in batches).

When using virtio-net, the user-space VMM is still responsible

for moving data between the (endpoint of the) TAP interfaces and

the virtio-net ring buffers. Hence, when a packet is received, as de-

picted in the left hand side of Fig. 1:

1. the host kernel notifies the user-space VMM that a new packet is

available on the TAP device file;

1 virtio-net is a para-virtualised I/O framework for high speed guest network-

ing [13].



Download	English	Version:

https://daneshyari.com/en/article/449966

Download	Persian	Version:

https://daneshyari.com/article/449966

Daneshyari.com

https://daneshyari.com/en/article/449966
https://daneshyari.com/article/449966
https://daneshyari.com/

