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Abstract

The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence

mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class

of regulatory functions is the y-logistic, which generalizes the logistic equation. Using this model as a motivation, this

paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two

equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-

dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually,

the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian

parameter r and a competition coefficient y. Distinct sign combinations of these parameters reproduce not only the family of

y-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown

that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important

allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest

are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over

a population.
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1. Introduction

The logistic equation is a paradigm for population
biology. This simple model, in its continuous (Verhulst,
1838; Pearl, 1927) or discrete (May, 1976) versions
describe two fundamental properties of population
biology, which are (i) the initial exponential rates of
growth, and (ii) density-dependent effects, like competi-
tion under limited resources, indicated by saturation
values. The discrete logistic equation, in itself opened a
new and broad field in biology related to chaotic
behaviours, and for which some experimental evidences
exist (Hanski et al., 1993; González et al., 2003b). The
continuous version of logistic growth, although sharing
properties with its discrete analogue, differs in some

aspects. It does not show intrinsic bifurcations as the
discrete version does, and is much more simple to treat
analytically.

Gilpin and Ayala (1973) and Gilpin et al. (1976)
introduced a model that ‘‘slightly’’ generalizes the
popular logistic equation. Their model, consists on
modifying the term corresponding to the density-
dependence with an exponent y
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where x is population size, the notation _x corresponds to
time derivative dx=dt, and r, y, and x1 are parameters
of the model. Compared to the logistic equation, their
‘‘global model’’ describes a population that converges in
time to the same size as the logistic growth, i.e. to the
carrying capacity x1. However, the exponent y gives
new interpretations to this sigmoid model of growth. If
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y41 then intra-specific competition is high, and the
population takes more time to reach its asymptotic
value, termed carrying capacity. If 0oyo1 then
competition is lower and the carrying capacity is reached
earlier than in the corresponding logistic dynamics
(Gilpin and Ayala, 1973; Gilpin et al., 1976).

The y-logistic model, as it has been termed after-
wards, introduced a new concept on population ecology
that is the y-selection strategies (Gilpin and Ayala, 1973;
Gilpin et al., 1976). Originally, they proposed the model
to explain data from competing Drosophila systems after
failure to use a Lotka–Volterra-like model (Ayala et al.,
1973). Afterwards, non-competitive versions of the
system (i.e. one ‘‘allele’’ or one ‘‘species’’ model) have
been used in conservation ecology to model avian
population dynamics and calculate extinction times
(Saether et al., 2000), and also to estimate the effects
of environmental stochasticity on population growth
(Saether and Engen, 2002). Other population models
have included stochasticity to aid parameter estimation
and study the effect of environmental changes in caprine
populations (Saether et al., 2002). This model has also
been employed in community ecology to estimate
species abundance (Diserud and Engen, 2000). The y-
logistic equation is a ‘‘slightly more complicated model
[that] yields significantly more accurate results’’, using
the original words of Gilpin and Ayala (1973).

There are, however, other kinds of regulation terms
that have been successfully employed to model other
kinds of populations and growth. Sigmoid curves in
particular are attractive for biologists, but are not
necessarily described by y-logistic equations. The von
Bertalanffy (1966) equation, for example, is a sigmoid
curve that is frequently used in allometric modelling, as
well as the recently proposed (and controversial) curve
derived from bioenergetic considerations by West et al.
(2001). Another kind of sigmoid is given by the
Gompertz equation (Gompertz, 1825), which was
originally formulated to model human demographic
data. The Gompertz equation has become an important
tool in modelling tumour growth (Norton et al., 1976),
although applications include a wider range of topics.

All of these sigmoid share the property of reaching
carrying capacity, although they have different func-
tional forms (Table 1), which confere distinct dynamical
properties: inflection points, critical behaviours near
x ¼ 0, or rate of convergence to equilibrium.

However, not all populations obey saturated growth.
Among non-saturated growths the first classical example
is exponential growth, typically employed to describe
bacterial cloning (Hershey, 1939), or simply as descrip-
tors for non-regulated conditions of growth. A ‘‘general
version’’ of the exponential is potential growth—which
actually shows some kind regulation but does not reach
a carrying capacity. Potential growth appears in tumour
biology (Hart et al., 1998), early-life evolution (Szathm-
ary and Demeter, 1987), lifehistory theory (Calder,
1984; Roff, 1986; Day and Taylor, 1997; Stearns, 2004),
as well as in allometry (Peters, 1983; Calder, 1984;
Brown and West, 2000). Potential growth functions is
typically a consequence of complex systems where there
are several levels of organization having a direct
consequence on growth (e.g. Szathmary and Demeter
(1987); West et al. (1997)).

Motivated by the y-logistic equation, this paper
introduces an alternative way to interpret and formulate
population dynamics models. The description explained
through out this paper reduces exactly to most common
population models, including the above-mentioned
growth dynamics (resumed in Table 1). With this new
formalism general scaling laws are derived, using initial
population size and carrying capacities. These scaling
laws, include the heuristic scaling introduced by West
et al. (2001) in allometry.

2. ‘‘Mechanics’’ of self-regulation

One of the central issues in population dynamics is to
determine the growth function that describes a parti-
cular population. Growth dynamics in general can be
expressed in the form

_x ¼ xrðxÞ. (2)
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Table 1

Common regulation functions for different population growth models

Model Growth rate Malthusian parameter Interaction parameter Initial rate

Exponential rðxÞ ¼ a r ¼ 0 y ¼ 0 að0Þ ¼ aa0

Logistic rðxÞ ¼ rð1� axÞ r40 y ¼ 1 að0Þ40

y-Logistic rðxÞ ¼ r
y ð1� axyÞ r40 y40 að0Þ40

Gompertzian rðxÞ ¼ �r logðaxÞ r40 y ¼ 0 að0Þ40

Potential rðxÞ ¼ axy r ¼ 0 ya0 að0Þa0

von Bertalanffy rðxÞ ¼ �3rð1� ax�1=3Þ r40 y ¼ � 1
3

að0Þ40

West et al. (2001) rðxÞ ¼ �4rð1� ax�1=4Þ r40 y ¼ � 1
4

að0Þ40

In all these equations x is the size of the population, r is the Malthusian parameter, y is the competition coefficient, and a is a parameter determined

from environmental conditions. When populations grow to a saturation, a is related to the carrying capacity.
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