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Abstract

Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical

properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of

attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified on any

biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation—

Fisher’s geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the

Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher’s model is asymptotically

exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of

Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and

sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately

exponential.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent work in the theory of adaptation has focused
on DNA sequence models. Real adaptation in real
organisms must, after all, occur in a space of alternative
DNA sequences. These recent efforts build on pioneer-
ing work by John Maynard Smith (1962, 1970) and John
Gillespie (1983, 1984, 1991), who emphasized that, with
realistically low mutation rates, natural selection can
only ‘‘see’’ mutant sequences that differ from wild-type
by a single base-pair change: double and triple, etc.
mutants are too rare to be of much significance to
molecular evolution. Gillespie further emphasized that,
because the wild-type allele typically enjoys high fitness
and adaptation involves the substitution of sequences

having yet higher fitness, almost all adaptive evolution
occurs among the fittest few alleles locally available at a
locus or small genome. Put differently, almost all
adaptation occurs within the right-hand tail of the
distribution of allelic fitnesses (Gillespie, 1991; Orr,
2003, 2005). As Gillespie further argued, this means that
we can import extreme value theory—a body of
probability theory that characterizes extreme draws
from distributions (Gumbel, 1958; Leadbetter et al.,
1983; Embrechts et al., 1997)—into the study of
adaptation.

Gillespie (1983, 1984, 1991) used extreme value theory
to characterize the statistical properties of molecular
evolution in his ‘‘mutational landscape model,’’ a model
of adaptation over rugged fitness landscapes. More
recent work has used extreme value theory to study the
genetics of adaptation in this model. Orr (2002), for
instance, showed that if the wild-type allele represents
the ith fittest allele (more precisely, single base-pair
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changes to the wild-type yield i � 1 beneficial muta-
tions), natural selection will on average substitute a
mutant allele having fitness rank ði þ 2Þ=4 at the next
step in adaptation. It has also been shown that the mean
selection coefficient, s, fixed at subsequent steps in
adaptation falls off as an approximate geometric
sequence (Orr, 2002), and that parallel evolution should
be common at the DNA sequence level; indeed parallel
evolution should occur about twice as often under
positive selection as under neutrality (Orr, 2004a).
Finally, it has been shown that new beneficial mutations
have exponentially distributed fitness effects (Orr, 2003).

These results, like most that depend on extreme value
theory, are robust to many biological details. Most
important, these results hold for many possible distribu-
tions of allelic fitnesses—a distribution that is almost
always unknown. Studies of the mutational landscape
model do, however, depend on certain assumptions
about the tail behavior of the distribution of allelic
fitnesses.

In particular, all studies of the mutational landscape
model assume that the right tail of the distribution of
allelic fitnesses falls within the domain of attraction of
the so-called Gumbel-type extreme value distribution
(EVD), which has cumulative distribution function
LðxÞ ¼ exp½� expð�xÞ�. An EVD describes the distribu-
tion of maxima (or a linear transformation of maxima)
drawn from a distribution. In reality, there are three
different types of extreme value distribution (Gumbel,
1958; Leadbetter et al., 1983; Embrechts et al., 1997).
The Gumbel type holds for almost all ‘‘ordinary’’
distributions, including the exponential, gamma, nor-
mal, lognormal, and logistic. The Frechet type holds for
very heavy-tailed distributions, like the Cauchy, that
lack all or higher moments. The Weibull type holds for
many (though not all) distributions that are truncated
on the right.

There are good reasons why the theory of adaptation
has, so far, assumed that the distribution of allelic
fitnesses is of the Gumbel type. For one thing, the
Gumbel type was the focus of classical extreme value
distribution and arguably is better understood than the
alternatives; indeed the Gumbel type is often referred to
as the EVD. More important, the Gumbel type holds for
a wider range of distributions than the Frechet and
Weibull types (Embrechts et al., 1997). Although it is
sometimes claimed that the Gumbel EVD holds only for
exponential-like distributions, this is misleading. In
reality, distributions having infinite or finite (truncated)
right end-points can belong to the Gumbel type
(Leadbetter et al., 1983; Embrechts et al., 1997).
Moreover, distributions whose tails are lighter than
exponential (‘‘subexponential,’’ like the lognormal), or
whose tails are heavier than exponential (‘‘superexpoen-
tial,’’ like the normal) can belong to the Gumbel type
(Embrechts et al., 1997, pp. 138, 145, 277).

The other EVD types may also be inappropriate
biologically. The Weibull type, for instance, appears
inappropriate as it is hard to see why there should, in
principle, be a ceiling on the highest fitness possible at a
gene. (In any given case, i.e. given a particular wild-type
allele, there is a best possible mutant allele, but that is a
different matter; see Section 3.) The situation may be
worse for the Frechet type, which does not easily allow
weak selection (extreme draws from heavy-tailed dis-
tributions are separated by large spacings). Also,
because the Frechet type holds for distributions lacking
all or higher moments, we would have no guarantee that
mean fitness at a gene could even be defined.

These arguments are, however, obviously not decisive. In
this note, I present some support for the Gumbel
assumption. In particular, I show that random mutation
in Fisher’s (1930) geometric model of adaptation gives rise
to a distribution of mutational fitness effects of the Gumbel
type. Fisher’s geometric model represents one of the
simplest and best studied models of mutation and
adaptation. The model pictures a population as a point
in a high-dimensional phenotypic space, in which each axis
represents a trait. The population is assumed to be
presently off the (local) phenotypic optimum and moves
closer to it by producing random mutations. These
mutations are represented by vectors having some magni-
tude and random direction in phenotypic space. Mutations
that fall closer to the optimum are beneficial, while those
that fall farther away from the optimum are deleterious;
because fitness declines monotonically with distance from
the optimum (i.e. the landscape is locally smooth), one can
calculate the fitness effect of any mutation.

Fisher (1930) used this geometric model to calculate
the probability that a mutation of some phenotypic size
will be beneficial. He showed that this probability falls
off very rapidly with the size of a mutation; Fisher
interpreted this to mean that mutations of very small
phenotypic effect must be the stuff of adaptation.
Kimura (1983) showed, however, that, when taking into
account the stochastic loss of beneficial mutations, the
distribution of phenotypic effects among mutations
fixed at the first step in adaptation is bell-shaped, with
mutations of intermediate effect getting substituted most
often (also see Otto and Jones, 2000). Finally, Orr (1998)
showed that, when integrating over entire adaptive
walks (which may involve many substitutions), the
distribution of phenotypic effects among mutations
fixed during adaptation is nearly exponential.

Here I show that random mutation in Fisher’s model
gives rise to a distribution of mutational fitness effects of
the Gumbel type. I also show that the distribution of
fitness effects among beneficial mutations in Fisher’s
model is approximately exponential.

My approach is mostly analytic. But because this
work involves several approximations, I check the
accuracy of all results with exact computer simulations.
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