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a b s t r a c t 

Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time- 

series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing 

curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric 

method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To sim- 

plify parameter estimation, the method uses S-system-type equations with simple power law-type efflux 

terms. Iterative calculation using this method was found to readily converge, because parameters are esti- 

mated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy 

mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because 

they are probably close to their true behaviors regardless of errors that may be present in the actual data. 

Finally, calculations for each differential equation were found to converge in much less than one second 

if initial parameters are set at appropriate (guessed) values. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Analytical instruments have greatly improved in the past two 

decades, and it is now possible to comprehensively measure intra- 

cellular metabolite concentrations [1,2] . If these metabolome data 

are then used to construct a mathematical model, one will be able 

to simulate actual metabolic reactions in cells, and thereby elu- 

cidate reaction mechanisms. However, the data are invariably in- 

fluenced by measurement errors and individual differences [3] . To 

overcome this problem, the data can initially be smoothed and the 

smoothing curves can be used to extract data points to construct 

a mathematical model [4,5] . If a simple structure is contained in 

a network the equation determined by the smoothing method can 

partly be adopted in the finally constructed mathematical model. 

Unfortunately, the mathematical function used to smooth data is 

in most cases entirely irrelevant to the phenomenon of interest. In 

any case, smoothing curves would probably be close to true values 

when measured data are not widely dispersed. However, highly 

scattered data provide innumerable possible curves. Furthermore, 

when data for each metabolite are smoothed independently, the 

resulting curves usually do not satisfy mass balances. Conse- 

quently, the use of smoothed values can be questionable. 
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Time-dependent metabolite concentrations can be represented 

approximately in terms of an S-system or a GMA-system within 

the framework of biochemical systems theory [6–8] . Iwata et al. 

[9] examined how much a simplified S-system equation with an 

efflux term agrees with the time course of each metabolite when 

the values of two unknown parameters, i.e ., rate constant and 

kinetic order, are adjusted. This is based on the fact that the time 

course of each metabolite depends on its concentration in a pool 

from which it outflows. Results showed that the efflux term, ex- 

pressed as a function of the concentration of the relevant metabo- 

lite, can generate satisfactory agreement between calculated and 

measured time courses. This finding suggests that the calculated 

time courses can thus be used as smoothing curves. However, 

they do not contain any other effects such as feedback inhibition 

and, therefore, may be incorrect biochemically. Nevertheless, the 

smoothing method is physicochemically meaningful, as it is based 

on the S-system representation. Moreover, since the time course of 

metabolites reflects network structures, S-system equations with 

parameters determined from time-series data would by extension 

also generate smoothing curves that reflect network structures. 

In this study, we attempt to establish a data smoothing method 

that creates calculated values that satisfy mass balances, and 

also enables easy estimation of rate constants and kinetic orders. 

The fundamental equation used in this method is an S-system 

representation with an efflux term in the form of a simple power 
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law. Moreover, we investigate a convergent calculation by which 

several parameters in the efflux terms are estimated rapidly and 

efficiently by least-squares. To evaluate performance, the proposed 

smoothing method is applied to several network models. 

2. Theory 

2.1. S-system representation 

The rate of change of metabolite concentrations can be de- 

scribed as an S-system-type differential equation: 

d X i 

dt 
= αi 

n ∏ 

j=1 

X 

g i, j 

j 
− βi 

n ∏ 

j=1 

X 

h i, j 

j 
= V i − V −i (i = 1 , 2 , . . . , n ) , (1) 

where X i ( i = 1, …, n ) represents metabolite concentrations, V i and 

V −i are influx and efflux terms, αi and β i ( i = 1, …, n ) are the rate 

constants in influx and efflux terms, g i,j and h i,j ( i,j = 1, …, n ) are 

the kinetic orders of influx and net efflux, and n is the number of 

dependent variables. Eq. (1) is the canonical representation gen- 

eralized for a metabolic reaction network, and ordinary network 

systems can be written in simpler forms. Nevertheless, even such 

simple systems have a number of parameters that are not easy to 

determine from time-series data. 

The present study proposes a data smoothing method based 

on Eq. (1) . However, the number of parameters to be estimated 

should be reduced as much as possible. As efflux from a metabo- 

lite pool depends on the metabolite concentration in that pool, we 

can express each differential equation simply as 

d X i 

dt 
= V i − βi X 

h i,i 
i 

(i = 1 , 2 , . . . , n ) . (2) 

Eq. (2) , a simpler S-system form, is reasonable, because efflux 

is expressed as a function of the concentration of the relevant 

metabolite, and a large body of research indicates that the 

S-system model (or power-law function) can suitably capture 

the behavior of metabolites. Our data-smoothing method de- 

termines the parameters in each differential equation stepwise, 

from upstream to downstream metabolites. Finally, to gain a high 

probability of convergence, we assume in Eq. (2) that the influx V i 

is known, while both β i and h i,i are unknown. 

If the downstream metabolite X k imposes feedback inhibition 

strongly on an enzyme that catalyzes an efflux, its concentration 

may decrease or oscillate. Eq. (2) cannot capture such a behavior, 

and therefore we use 

d X i 

dt 
= V i − βi X 

h i,i 
i 

X 

h i,k 
k 

(i = 1 , 2 , . . . , n ) , (3) 

where β i , h i,i , and h i,k are unknown. 

Hereafter, we use Method I to refer to the proposed data- 

smoothing method, and we use Method II to refer to the 

least-squares method of estimating parameters in a polynomial 

equation. 

2.2. Pathway types and a method for convergent calculation 

Let us consider metabolic reaction pathways consisting of ele- 

mentary network structures shown in Fig. 1 . These include a linear 

pathway with feedback inhibition, as well as one-metabolite, two- 

metabolite, diverging-branch, and converging-branch pathways. 

We now describe the procedure for estimating parameters in each 

network structure. 

2.2.1. Linear pathway with a constant influx 

When a highly abundant metabolite is the starting substrate 

in a network ( Fig. 1 (a)), its concentration changes very slowly and 

can be approximated as constant. Thus, the S-system equation is 

given as 

d X 1 

dt 
= α1 − β1 X 

h 1 , 1 
1 

, (4) 

d X 2 

dt 
= β1 X 

h 1 , 1 
1 

− β2 X 

h 2 , 2 
2 

. (5) 

where α1 in the influx term is constant and is assumed to be 

known a priori . This parameter, for example, may represent uptake 

of glucose, a flux that can be measured easily. Let us now attempt 

to determine β1 and h 1,1 so that X 1, i ( i = 1, … , N ) values calculated 

using Eq. (4) at t i ( i = 1, … , N ) agree with the measured values 

X 1, i 
exp ( i = 1, … , N ), where N represents the number of calculated 

or measured values. Least-squares provides the sum of the squared 

differences between calculated and measured values, S ( β1 , h 1,1 ), 

according to 

S ( β1 , h 1 , 1 ) = 

N ∑ 

i =1 

(
X 1 ,i − X 1 ,i 

exp 
)2 

. (6) 

We adopt the Newton–Raphson method as a root-finding 

technique to determine unknown parameters. This method is a 

very simple algorithm that converges rapidly [10–12] . Eq. (6) is 

partially differentiated with respect to β1 and h 1,1 , and the re- 

sulting equations are set to zero [13] . Consequently, the following 

equations are derived: 

f 1 ( β1 , h 1 , 1 ) = 

N ∑ 

i =1 

∂ X 1 ,i 

∂ β1 

X 1 ,i −
N ∑ 

i =1 

∂ X 1 ,i 

∂ β1 

X 1 ,i 
exp (7) 

f 2 ( β1 , h 1 , 1 ) = 

N ∑ 

i =1 

∂ X 1 ,i 

∂ h 1 , 1 

X 1 ,i −
N ∑ 

i =1 

∂ X 1 ,i 

∂ h 1 , 1 

X 1 ,i 
exp 

. (8) 

When f 1 ( β1 , h 1,1 ) and f 2 ( β1 , h 1,1 ) are set to zero, Eqs. (7) and ( 8 ) 

provide algebraic equations, which can be solved with respect 

to β1 and h 1,1 by the Newton–Raphson method. The convergent 

calculation is carried out using 

β1 
(p) 

h 1 , 1 
(p) 

]
= 

β1 
(p−1) 

h 1 , 1 
(p−1) 

]
−

⎡ 

⎢ ⎣ 

∂ f 1 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)

∂ β1 

∂ f 1 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)

1 

∂ h 1 , 1 

∂ f 2 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)

∂ β1 

∂ f 2 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)

∂ h 1 , 1 

⎤ 

⎥ ⎦ 

−1 

f 1 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)

f 2 

(
β1 

(p−1) 
, h 1 , 1 

(p−1) 
)
⎤ 

⎦ , (9) 

where the p th estimates are obtained from the ( p −1)th estimates. 

This iterative calculation provides solutions to β1 and h 1,1 . It 

should be noted that this calculation requires the values of 

∂ X 1 ,i 

∂ β1 

, 
∂ X 1 ,i 

∂ h 1 , 1 

, 
∂ 

∂ β1 

(
∂ X 1 ,i 

∂ β1 

)
, 

∂ 

∂ h 1 , 1 

(
∂ X 1 ,i 

∂ β1 

)
, 

and 

∂ 

∂ h 1 , 1 

(
∂ X 1 ,i 

∂ h 1 , 1 

)
( i = 1 , . . . , N ) 

at each time point t i ( i = 1, … , N ). These values must be obtained 

from the following equations, which are derived by partially 

differentiating Eq. (4) with respect to β1 and h 1,1 : 

d 

dt 

∂ X 1 

∂ β1 

= −X 1 
h 1 , 1 − β1 h 1 , 1 X 1 

h 1 , 1 −1 ∂ X 1 

∂ β1 

(10) 

d 

dt 

∂ X 1 

∂ h 1 , 1 

= −β1 
∂ X 1 

h 1 , 1 

∂ h 1 , 1 

(11) 
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