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a b s t r a c t 

‘Critical vaccination coverages’ are vaccination allocations that result in an effective reproduction ratio of 

one. In a population with interacting subpopulations there are many different critical vaccination cover- 

ages. To find the most efficient critical vaccination coverage, we define the following optimization prob- 

lem: minimize the required amount of vaccines to obtain an effective reproduction ratio of exactly one. 

We prove that this optimization problem is equivalent to the problem of maximizing the proportion of 

susceptibles that escape infection during an epidemic (i.e., maximizing the herd effect). 

We propose an efficient general approach to solve these optimization problems based on Perron–

Frobenius theory. We study two special cases that provide further insight into these optimization prob- 

lems. First, we derive an efficient algorithm for the case of multiple populations that interact according to 

separable mixing. In this algorithm the subpopulations are ordered by their ratio of population size to re- 

production ratio. Allocating vaccines based on this priority order results in an optimal allocation. Second, 

we derive an explicit analytic solution for the case of two interacting populations. We apply our solu- 

tions in a case study for pre-pandemic vaccination in the initial phase of an influenza pandemic where 

the entire population is susceptible to the new influenza virus. The results show that for the optimal al- 

location the critical vaccination coverage is achieved for a much smaller amount of vaccines as compared 

to allocations proposed previously. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In infectious disease epidemiology the potential of an infectious 

agent to cause an epidemic is often expressed in terms of the 

reproduction ratio and the final size. The final size is the eventual 

number of people that have become infected. The reproduction 

ratio, denoted by R , is considered to be one of the most important 

parameters in infectious disease epidemiology and has received 

considerable attention [cf. 14] . The effectiveness of a control 

strategy against the infectious agent is often expressed as the 

capability of the strategy to reduce the reproduction ratio or the 

final size. Several studies focus on the minimization of R under 

a capacity constraint on the available resources [e.g., 22 , 42] or 

on the threshold criterion R = 1 [e.g., 7 , 26] . R is rather tractable 

and hence the above papers typically use analytical methods 
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based on matrix algebra. In contrast, applying analytical methods 

to minimizing the final size is more difficult, as the final size is 

implicitly defined. Therefore, numerical evaluation [e.g., 3 , 29 , 46] or 

simulation [e.g., 1 , 10 , 18] are typically used to analyze the final size. 

There is no obvious connection between minimization of the 

reproduction ratio R and minimization of the final size. It is not 

clear how an intervention that minimizes R affects the final size 

and vice versa. Tildesley and Keeling [39] even show that the 

reproduction ratio within a population is a bad predictor for the 

final size when populations interact. The relation between R and 

the final size has been studied for a single population and a 

one-to-one relation can be derived [31] . However, this relation 

does not extend to multiple populations. 

A first step in analyzing the relation between R and the final 

size for multiple populations is made by Andreasen [2] for the case 

without infection control. The initial population is then completely 

susceptible and the reproduction ratio R equals the basic reproduc- 

tion ratio R 0 . Andreasen [2] shows that an epidemic occurs only 

for R 0 > 1, implying that the final size equation has an interior 
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solution in that case. In case R 0 ≤ 1 only the boundary solution ex- 

ists, corresponding to no outbreak. We build upon [2] by including 

vaccination in a completely susceptible population and assuming 

that the disease is introduced after vaccination. In a vaccinated 

population the final size is determined by the direct effect of 

vaccination and the indirect effect. This latter effect is also known 

as the herd effect . The direct effect is measured as the proportion 

of the people that are protected from infection by vaccination, 

whereas the indirect herd effect is measured as the proportion of 

the people that are not exposed to infection and thus escape infec- 

tion without being vaccinated. The herd effect can be influenced 

by the vaccine allocation and is therefore the most interesting. 

We are interested in finding vaccine allocations that maximize 

the herd effect and we define the following optimization problem: 

maximize the overall herd effect. This problem is difficult to 

solve [28] . We show that formulating the equivalent optimization 

problem in terms of R enables to solve the problem. We show 

analytically that the herd effect in a set of populations can only 

be maximized for a vaccination allocation that results in R = 1 . 

In previous work we already showed that this holds for a single 

population [17] , we extend this in the current paper to interact- 

ing populations. The current paper differs from [17] in studying 

prepandemic vaccination with unlimited supply of vaccines, such 

that critical vaccination coverage is always attainable. In contrast, 

[17] focuses on limited vaccine stockpiles for sudden outbreaks, 

and it studies the intricate difficulties of allocating vaccines when 

critical coverage cannot be attained. 

The main contribution of this paper is that we gain insights in 

vaccine allocation problems by looking at them from the perspec- 

tive of mathematical optimization. This enables us to formulate 

structured approaches to find the optimal allocation : the best 

possible allocation according to some well-defined criterion. Our 

approach differs from others in literature who either compare a 

few allocation schemes [e.g., 36 , 40] or enumerate all possibili- 

ties [e.g., 32 , 29] . (Note that many aspects play a role in vaccine 

allocation (operational, ease of understanding et cetera). So, our 

use of the word optimal should be seen relative: the solution is 

optimal insofar as our criterion for optimality is suitable.) Our 

contributions to vaccine allocation are summarized as follows. 

1. We prove the equivalence between two interesting vaccine al- 

location problems: maximizing the herd effect and minimizing 

the required amount of vaccines to obtain R = 1 . 

2. We characterize the optimal allocation for two special cases 

and guarantee that no better allocation exists. 

(a) We consider the case of separable mixing, which is of- 

ten studied and assumes that upon transmission from one 

individual to another the two individuals involved influ- 

ence transmission independently [14] . We derive an algo- 

rithm that provides especially interesting insights: we show 

that vaccinating according to a very simple priority ordering 

based on population size and disease parameters results in 

the optimal allocation. 

(b) For two populations we derive an explicit expression of the 

solution. 

3. We present an efficient solution approach for general cases (i.e, 

cases with more than two populations and cases where separa- 

ble mixing does not apply) based on Perron–Frobenius Theory 

[34] . 

4. Finally, we illustrate our approach to find the optimal alloca- 

tion in a case study for pre-pandemic vaccination in the initial 

phase of an impending influenza pandemic. The results show 

that the amount of required vaccines to attain R = 1 can dif- 

fer substantially if we compare the optimal allocation with pro- 

posed allocations in literature. 

Fig. 1. Illustration of the deterministic SIR model for two populations with param- 

eters γ j = 2 . 3 , β j j = 3 for j = 1 , 2 and β jl = 1 for j � = l . We introduce a minor infec- 

tion of i j (0) = 10 −6 for j = 1 , 2 to analyze the time course of the epidemic. Because 

of symmetry between populations the time course is presented for only one popu- 

lation. 

The advantage of explicit solutions and an efficient solution 

approach is that optimal solutions can be derived even when 

parameters are uncertain. With explicit solutions one can directly 

see the effects of changes in parameters and the efficient solution 

approach makes it computationally easy to perform a sensitivity 

analysis. 

The remainder of this paper is structured as follows. In 

Section 2 we formulate the problem: The herd effect and the 

reproduction ratio R are presented and illustrated for the stan- 

dard epidemiological SIR model. Next, we formulate the two 

vaccine allocation problems that are the main focus of the paper. 

Section 3 discusses the assumptions and some technical details 

that are needed for the analysis of the optimization problems. 

In Section 4 we prove that the two vaccine allocation problems 

are equivalent. Section 5 is dedicated to solving these problems. 

Section 6 contains an application of our solution method. We 

conclude the paper with a discussion in Section 7 . 

2. Problem formulation 

2.1. The SIR model 

We consider the standard epidemiological SIR model for a set 

J consisting of n interacting populations indexed by j , i.e., | J| = n . 

Every population is divided into three compartments for which the 

evolution is tracked [cf. 24] . Let s j ( t ), i j ( t ) and r j ( t ) be the fractions 

of population j respectively susceptible, infected and removed at 

time t . Let γ j denote the recovery rate in population j and let 

β jl denote the transmission rate between susceptible people from 

population j and infected people from population l . The SIR model 

describes the time course of an epidemic and consists of the 

following system of differential equations: 

ds j 

dt 
= −

∑ 

l∈ J 
β jl s j i l ∀ j ∈ J 

di j 

dt 
= 

∑ 

l∈ J 
β jl s j i l − γ j i j ∀ j ∈ J 

dr j 

dt 
= γ j i j ∀ j ∈ J (1) 

Fig. 1 illustrates the time course of an epidemic according to 

the SIR model. As time progresses the number of infected indi- 

viduals will approach zero and the epidemic will die out, i.e., 
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