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a b s t r a c t 

Dynamic models of biochemical networks are often formulated as sets of non-linear ordinary differential 

equations, whose states are the concentrations or abundances of the network components. They typically 

have a large number of kinetic parameters, which must be determined by calibrating the model with 

experimental data. In recent years it has been suggested that dynamic systems biology models are uni- 

versally sloppy, meaning that the values of some parameters can be perturbed by several orders of mag- 

nitude without causing significant changes in the model output. This observation has prompted calls for 

focusing on model predictions rather than on parameters. In this work we examine the concept of slop- 

piness, investigating its links with the long-established notions of structural and practical identifiability. 

By analysing a set of case studies we show that sloppiness is not equivalent to lack of identifiability, and 

that sloppy models can be identifiable. Thus, using sloppiness to draw conclusions about the possibility 

of estimating parameter values can be misleading. Instead, structural and practical identifiability analyses 

are better tools for assessing the confidence in parameter estimates. Furthermore, we show that, when 

designing new experiments to decrease parametric uncertainty, designs that optimize practical identifia- 

bility criteria are more informative than those that minimize sloppiness. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Dynamic models of cellular processes describe the interactions 

among molecular entities – for example, proteins, transcripts or 

regulatory sites – that determine cellular behaviour. Such mod- 

els typically consist of non-linear ordinary differential equations, 

whose state variables represent the concentrations of the network 

components and whose parameters characterize the reaction ki- 

netics. Unfortunately, in most cases the parameter values are un- 

known, or only rough estimates are available. It is therefore nec- 

essary to calibrate the model using time-series experimental data 

[28] . The task of estimating the parameter values is an optimiza- 

tion problem, whose objective is to minimize a cost function that 

quantifies the differences between model predictions and experi- 

mental data. In dynamic models of biochemical systems this prob- 

lem is typically characterized by limited observability, large num- 

ber of parameters, and scarce, poor quality data [7] . As a conse- 

quence, its solution is in general challenging and computationally 

expensive, even with efficient optimization methods. In addition, 

∗ Corresponding author. 

E-mail address: ebalsa@iim.csic.es (E. Balsa-Canto). 
1 To whom correspondence should be addressed. 

data limitations often lead to great uncertainty in the parameter 

estimates [47,48] . 

During the last decade, several works [22,23,34,44–46,52] have 

introduced and elaborated the concept of sloppiness . The parame- 

ters of a dynamic model can be divided into stiff (those that can be 

determined with great certainty) and sloppy (those that can vary 

by orders of magnitude without influencing significantly the model 

output), although it is difficult to establish a clear cut-off between 

both categories. The sloppiness of a model is quantified from the 

distribution of the eigenvalues of its Fisher information matrix; a 

separation of more than 3 orders of magnitude in the eigenvalues 

qualifies a model as sloppy. 

It has been claimed that dynamic systems biology models are 

universally sloppy [23] , and therefore it is not possible to obtain 

accurate estimates of their parameters. This idea has been cited in 

many publications and, unfortunately, has sometimes led to misin- 

terpretations. Since parameter estimation is often an arduous task 

in practice, it is tempting to use the notion of sloppiness to argue 

that it is not necessary nor possible to uniquely determine the pa- 

rameter values, thus justifying that no further efforts are invested 

to it (see for example [16,19,31,39,51] ). The suggestion that slop- 

piness is a universal – or, more precisely, ubiquitous – property 

of systems biology models has spurred a debate: should modellers 

desist from trying to estimate precise values for the parameters 

and, instead, focus on characterizing model predictions ? Exploring 
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this direction, Cedersund and coworkers [11–13] coined the term 

“core predictions” to denote specific model outcomes that can be 

uniquely determined, even if parameter values cannot. The param- 

eter regions complying with core predictions can be found using 

optimization, at least for models of moderate size [11] . 

In [43] the origin of sloppiness was traced back to the structure 

of the sensitivity matrix, which contains the sensitivities of the 

model outputs with respect to the parameters. Experimental design 

was proposed as a way of reducing sloppiness, concluding that the 

intensity of the effect is highly dependent on the available data, 

thus challenging the universality of the property. The importance 

of the role played by experimental design in this task had been 

stressed e.g. in [2,32] . Finally, it is worth mentioning that sloppi- 

ness has sometimes been considered as an indication of biological 

robustness [21,30] . 

In this work we aim at clarifying the application and impli- 

cations of sloppiness, to avoid certain misconceptions. We study 

the role played by model parameters using the well established 

framework of identifiability , which has a long history of applica- 

tion in dynamical systems [50] , including biological models. In- 

deed, while the study of parameter identifiability has been present 

in the systems and control literature for decades, many method- 

ological advances in the field have been motivated by biological 

applications, starting in the 1970s and 1980s [8,20,27,37] and con- 

tinuing until the present day [49] . Identifiability-based concepts 

are rigorously defined and well understood, and they can be anal- 

ysed with a large number of techniques. Hence it is of interest to 

clarify the connection between sloppiness and (lack of) identifiabil- 

ity [19,38,41] , which, despite recent developments, is still incom- 

pletely understood. Here we study the relationship between slop- 

piness and identifiability from both structural and practical points 

of view. Using a set of case studies, we inquire to which extent is 

sloppiness determined by the model structure, and how it is influ- 

enced by the quantity and quality of experimental data. Then we 

explore optimal experiment design alternatives that reduce slop- 

piness and improve identifiability, and clarify the connections be- 

tween both concepts. We conclude that identifiability analysis can 

be more insightful than sloppiness for characterizing the mapping 

between parameters and outputs. 

2. Methods 

We consider general nonlinear models of the form: 

�( p ) : 

{
˙ x = f (x , p ) + 

∑ n u 
j=1 

g j (x , p ) u j , 

y = h (x , p ) , x (t 0 ) = x 0 (p ) 
(1) 

where x = (x 1 , . . . , x n x ) ∈ R 

n x is the state vector, u = 

(u 1 , . . . , u n u ) ∈ R 

n u a n u −dimensional input (control) vector, 

and y = (y 1 , . . . , y n y ) ∈ R 

n y is the n y −dimensional output (experi- 

mentally observed quantities). The vector of unknown parameters 

is denoted by p = (p 1 , . . . , p n p ) ∈ P , and is assumed to belong 

to an open and connected subset of R 

n p . The entries of f , 

g = (g 1 , . . . , g n u ) and h are analytic functions of their arguments. 

These functions and the initial conditions may depend on the 

parameter vector p ∈ P . 

Note that the model in Eq. (1) is composed of two different el- 

ements: (i) a set of ordinary differential equations (ODEs), describ- 

ing the system dynamics and (ii) the observation function, which 

relates states (typically concentrations or amounts) and measure- 

ments. In this work we consider that the mathematical structure of 

the system dynamics ( f , g ) can by no means be modified, whereas 

the mathematical structure of the observation function ( h ) may 

eventually be modified by the experimental scheme (which, in fact, 

leads to a different model). 

2.1. Parameter estimation 

The above representation (1) is a sufficiently accurate math- 

ematical description of the real system, i.e. the only uncertainty 

is represented by the vector of unknown parameters. This means 

that, in principle, there is a unique “true” value of the param- 

eters, denoted by p 

∗ = (p ∗
1 
, . . . , p ∗n p ) , which allows the model to 

reproduce a given data set and to predict the system behaviour. 

This vector p 

∗ is computed by means of data fitting, i.e. by solving 

an optimization problem devoted to minimizing the log-likelihood 

function, which for Gaussian experimental noise reads: 

χ2 (p ) = 

n e ∑ 

e =1 

n y ∑ 

o=1 

n s ∑ 

s =1 

[ y e,o,s (p , t s ) − ˜ y e,o,s ] 
2 

σ 2 
e,o,s 

, (2) 

where n e is the number of experiments, n y the number of observ- 

ables for each experiment, and n s the number of sampling times; 

y e,o,s (p , t s ) denotes the output of the model (1) for the sampling 

time t s under the experimental conditions e ; ˜ y e,o,s is the corre- 

sponding experimental data; and σ 2 
e,o,s is the variance of the mea- 

surement noise. 

2.2. Structural identifiability 

Structural identifiability analysis studies the possibility of find- 

ing a unique solution to the parameter estimation problem, as- 

suming perfect experimental data (i.e. noise-free and continuous 

in time) [50] . A parameter p i , i = 1 , . . . , n p is structurally globally 

(or uniquely) identifiable if for almost any p 

∗ ∈ P , �(p ) = �(p 

∗) ⇒ 

p i = p ∗
i 
, whereas a parameter p i , i = 1 , . . . , n p is structurally locally 

identifiable if for almost any p 

∗ ∈ P there exists a neighbourhood 

V (p 

∗) such that p ∈ V (p 

∗) and �(p ) = �(p 

∗) ⇒ p i = p ∗
i 
. 

In some cases, an unidentifiable parameter may be made iden- 

tifiable by including more measured outputs in the observation 

function, h . This modification leads to a new model with a dif- 

ferent structure. In other cases, however, the model may be struc- 

turally unidentifiable even if all states are accessible to the exper- 

imentation, i.e. y = x . In this case it will not be possible to avoid 

the lack of identifiability. 

Recent reviews [18,35] compare alternative methods to per- 

form global structural identifiability analysis for nonlinear mod- 

els; additionally, state of the art local methods are described in 

[15,49] . In this work we adopt the MATLAB based GenSSI toolbox 

[17] , which combines the generating series approach with identi- 

fiability tableaus . The underlying idea of the generating series ap- 

proach is that the observables y can be expanded in series with 

respect to time and inputs around a given time point ( t 0 ), and that 

the uniqueness of the series coefficients guarantees the structural 

identifiability of the model. The series coefficients are computed 

by means of successive Lie derivative of h along the vector fields f 

and g . The identifiability tableaus correspond to the Jacobian of the 

Lie derivatives with respect to the model parameters, and help to 

decide on global or local structural identifiability of the model [5] . 

2.3. Sloppiness 

Parameter sloppiness can be quantified by means of the eigen- 

values of the Hessian of the log-likelihood function ( Eq. (2) ) as 

evaluated in the optimal value of the parameters p 

∗. The Fisher 

information matrix ( F ) can be used as an approximation of the 

Hessian: 

F = E 

([ 
∂χ2 (p ) 

∂p 

] T [ ∂χ2 (p ) 

∂p 

] )
, (3) 
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