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a b s t r a c t 

Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. 

Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of 

being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood forma- 

tion has naturally an associated continuous dynamics, because the cellular populations can – on average –

easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates 

some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for 

studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal 

cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of 

course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally 

impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and 

the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous 

parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. 

Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a 

theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. 

In addition, this work cellular dynamics analysis may shed light on understanding Peto’s paradox, which 

is shown here as an emergent property of the discrete-continuous nature of the system. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Hematopoiesis is the process for the generation of all cellular 

blood elements. A continuous supply of cells is necessary to com- 

pensate for the loss of cells due to apoptotic senescence or migra- 

tion out of the circulating compartment. Blood cell formation has 

at its root hematopoietic stem cells (HSC) that have the dual prop- 

erty of self renewal and the ability to differentiate into all types of 

blood cells [1–3] . 

Allometric scaling laws of observables in biological organisms 

are widely known and a general model for the origin of many of 

them can be found (e.g.) in [4] . The number N of HSC that a mam- 

mal possesses is an example of this, because it can be written as a 

function of the adult average mass M in the form: 

N = N SC M 

3 / 4 , (1) 

∗ Corresponding author. 
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with N SC = 15 . 9 kg −3 / 4 
, as it was stated in [5] . 

In [6] the authors provided a simple model for human 

hematopoiesis in which the observed exponential expansion of 

cells from the active stem cell pool to the mature cells is naturally 

incorporated, as 32 cellular differentiation stages (compartments) 

composed of approximately N i cells satisfying N i +1 /N i ≈ 1 . 93 ( i = 

1 , . . . , 31 ). The same idea was later generalized for mammals [7] . 

A discrete-continuous model for Chronic Myeloid Leukemia 

(CML) in humans was developed in [8] , able to reproduce the 

rarely (but statistically significant) cases in which the pacient 

does not die of cancer, simply because leukemic cancerous cells 

sometimes by chance do not proliferate. The authors concluded 

that it was enough to assume just the first k = 7 differentia- 

tion compartments as discrete/stochastic quantities and continu- 

ous/deterministic the rest. 

Using a similar mathematical model, CML and other hematolog- 

ical deceases were studied across mammals of arbitrary mass M in 
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[9] , where the authors mentioned that the total number k of com- 

partments assumed as stochastic is a mass dependent quantity. 

This is the starting point of the present work, in which we 

study –in detail– the M−dependence of the discrete-continuous 

limit k , in the context of CML. The article is organized as follows: 

in Section 2 we briefly describe the mathematical model for CML 

under consideration; in Section 3 we unveil the explicit functional 

relation between k and M , explaining how it arises from some 

physical and biological assumptions; this enables us in Section 4 to 

deduce a theoretical formula for the CML non-diagnosis probabil- 

ity of a mass M mammal, which has a single cancerous stem cell 

within its bone marrow; some important implications on Peto’s 

paradox [10] are discussed in Section 5 . 

2. The model 

As mentioned above, we follow the CML models of [8] and 

[9] in which blood is assumed to be produced inside of the bone 

marrow and composed of cells that can be imagined as distributed 

along 33 compartments labeled by i = 0 , 1 , 2 , . . . , 32 , according to 

their increasing degree of cellular differentiation. The ( active ) stem 

cell pool corresponds to i = 0 , has an approximately constant num- 

ber N ( Eq. (1) ) of cells along the life span of the animal and origi- 

nates all the rest of blood elements [5] . For normal hematopoiesis, 

every differentiated compartment is in equilibrium, having a cellu- 

lar population approximately given by 

N i = γ i N 

2 ε
i = 1 , . . . , 32 , (2) 

where γ = 1 . 93 , N is given by Eq. (1) and ε = 0 . 85 is the probabil- 

ity of differentiation after a cell division. 

Leukemic cells are assumed here to be descendent of a single 

cancerous stem cell that arises in the bone marrow at some time 

t = 0 during the life of the animal. The compartments are also 

shared by the leukemic cells because these follow the same dif- 

ferentiation tree and replicate each stage at the same rate normal 

cells do. The distinct feature that characterizes the cancerous cells 

is a lower probability of differentiation εc = 0 . 72 < ε [9,11] , that 

ultimately triggers the abnormal over-production of blood 

1 asso- 

ciated to CML diagnosis. Clearly, this constitutes a Darwinian type 

selection process, in which the cancerous cells are better fitted to 

the environment and have potentially a relative advantage with re- 

spect to the rest [12] . 

Lower differentiation com partments cells will be imagined as 

discrete entities following a stochastic dynamics. 

First, in order to reproduce the fact that the stem cell pool un- 

dergoes no amplification along the CML decease [8] , this compart- 

ment will be simulated as a Moran’s process. This will be initially 

composed of N − 1 healthy cells ( Eq. (1) ) and only one leukemic 

stem cell (LSC) that potentially triggers CML. On average, at a rate 

r 0 = RM 

−1 / 4 ( R = 2 . 9 kg 1 / 4 yr −1 ) every cell of this pool is chosen at 

random for reproduction and subsequently another cell is chosen 

for export (differentiation), remaining constant the cell population. 

Every cell of the subsequent ( i th) differentiation compartments 

( i = 1 , 2 , 3 , . . . ) divides into a pair of daughter cells at the specific 

rate r i = RM 

−1 / 4 r i ( r = 2 ε/ [ γ (2 ε − 1)] = 1 . 26 ). With a probability 

ε, the daughter cells differentiate (becoming members of the fol- 

lowing (i + 1) th compartment), and with a probability 1 − ε they 

just duplicate (staying at the same i th compartment). The cancer- 

ous cells follow the same dynamics of any normal cell, but with 

the different probability of differentiation εc mentioned above. Ini- 

tially, there are no leukemic cells inside of these differentiated 

compartments. 

1 Specifically, there is an unregulated growth of granulocytes, which are a type of 

white blood cells 

The size of the compartments goes exponentially with the dif- 

ferentiation degree, even for normal hematopoiesis ( Eq. (2) ). Con- 

sequently, higher differentiation compartments become numeri- 

cally uncontrollable under the above stochastic dynamics. Hence, 

for some suitable integer k , the time-dependent population N i ( t ) 

of higher compartments healthy cells (i.e. i > k ) are modelled in a 

continuous way, as the solution of the following set of differential 

equations: 

˙ N 1 = (1 − 2 ε) r 1 N 1 + r 0 N 0 (t) (3) 

˙ N i = (1 − 2 ε) r i N i + 2 εr i −1 N i −1 , i = 2 , . . . , 32 , 

where N 0 (t) = const. = N − 1 , N i (0) = Nγ i / 2 ε ( i = 1 , . . . , 32 , see 

Eq. (2) ), and where N k ( t ) is obtained from the discrete part of the 

model. 2 Easily, we can see that Eq. (3) are just the average deter- 

ministic version of the lower compartments stochastic dynamics. 

Similarly, by just replacing ε by εc in Eq. (3) , we get to the 

equations for the continuous dynamics of the N 

c 
i 
(t) higher com- 

partments cancerous cells ( i > k ), for N 

c 
0 
(t) = const. = 1 and start- 

ing from the initial conditions N 

c 
i 
(0) = 0 ( i = 1 , . . . , 32 ). 

The population of the healthy and cancerous cells of each 

compartment were numerically computed by running the soft- 

ware SCML, 3 which incorporates the discrete-continuous dynam- 

ics described above, under the assumption of a simulation time 

t bounded by the theoretical life span L = L 0 M 

1 / 4 , where L 0 = 8 . 6 

kg −1 / 4 yr [19] . 

The number of stochastic compartments is an input of SCML, 

as well as the mammal mass M . By varying these parameters, the 

software was run a huge number of times. The final outcome of ev- 

ery simulation was either alive (non-diagnosed) or dead (diagnosed) 

according to the same criteria of [9] . 4 

By mere stochastic competition, the cancer cells sometimes 

simply do not proliferate and their total population does not reach 

the thereshold needed to kill the animal. Consequently, the total 

number of stochastic compartments (defined by k ) must be cho- 

sen in order to reproduce this very important fact, that cannot be 

incorporated by a purely continuous model. 5 

Assuming only the first i compartments to be stochastic, a 

probability of non-diagnosis P i = P i (M) can be statistically com- 

puted. Fig. 1 shows the overall numerical result for M = 105 kg 

( i = 0 , 1 , 2 , 3 , . . . ). The discrete-continuous limit k = k (M) should 

point out the 1st of the compartments whose stochastic nature 

does not determine the final state of the system, being the animal’s 

fate (alive or dead) completely predicted by what happens on the 

first k ( M ) cellular compartments. Then, it is convenient to choose 

k as the label i where P i starts its final convergence towards the 

real probability of non-diagnosis p = p(M) . This can be mathemat- 

ically stated by defining k as the 1st label, for which the relative 

variation of the P i ’s remains bounded by a (given) tolerance T as 

follows: 

| P i +1 − P i | 
P i 

≤ T , i ≥ k (4) 

(see Fig. 2 ). In [8] and [9] , the authors did not take exactly the 

same route for defining k . They even considered the convergence 

of the average time to diagnosis t i = t i (M) ( i = 0 , 1 , 2 , . . . ). In any 

case, they did not study this issue by using a relation like Eq. (4) . 

2 Note that N k ( t ) determines N i ( t ), i = k + 1 , k + 2 , . . . , 32 
3 Developed by T. Lenaerts 
4 Specifically, the diagnosis condition is reached whenever N 32 (t) + N c 32 (t) > 3 N 32 

( ≈ 10 12 for M = 70 kg, which is the CML diagnosis condition for humans [14] ) 
5 Due to lower differentiation probability than the rest ( εc < ε), the natural ten- 

dency of the cancerous cells will be to overgrow. Even they can often overtake 

the healthy cells population by far. There is a 100% probability that this will kill 

an average-sized animal, if every compartment follows a continuous dynamics ( Eq. 

(3) ), despite assuming that the cancerous cells were originated by just a single 

leukemic stem cell [9,13] . 
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