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a b s t r a c t 

In a random walk (RW) in Z an individual starts at 0 and moves at discrete unitary steps to the right or 

left with respective probabilities p and 1 − p. Assuming p > 1/2 and finite a, a > 1, the probability that 

state a will be reached before −a is Q ( a, p ) where Q ( a, p ) > p . Here we introduce the cooperative random 

walk (CRW) involving two individuals that move independently according to a RW each but dedicate a 

fraction of time θ to approach the other one unit. This simple strategy seems to be effective in increasing 

the expected number of individuals arriving to a first. We conjecture that this is a possible underlying 

mechanism for efficient animal migration under noisy conditions. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

This problem is inspired by animal movement. The question we 

address is how a group of individuals can manage to increase their 

chances to arrive to the correct destination by traveling in groups. 

Mathematical models that propose underlying mechanisms for this 

phenomena, may shed some light on the still open question on 

the addition of intelligence that would explain why animals ben- 

efit from traveling in groups, even with limited communication 

skills. Here we define limited communication skills as an individ- 

ual’s ability to detect only the position of the other, either visually 

or by contact; that is, individuals can somehow share the decision 

taken, but not the rationale that led to that decision. 

In our quest for a simple model, we start by assuming that (a) 

our population is composed by two individuals that are equally 

prepared to process information from the environment, (b) that 

this information relates to the correct travel direction, and (c) the 

processing of information is carried out independently by each in- 

dividual. Underlying this process, there is the sense of grouping 

that compels the individuals to remain together, that is, they act 

independently most of the time, but an underlying aggregation 

force compels them no to go far away from each other. These sim- 

ple conventions will be the basis for our model. 

To analyze this phenomena, we chose as a model the Random 

Walk , a very versatile class of models. The term was coined by 

Pearson [11] and has been used in fields such as biology, chem- 

istry, computer science, ecology, economics, physics, psychology 

[13,14] and in particular, to model the motion of animals [2,6,7,10] . 

We chose the random walk with boundaries, where at each step, 

an individual moves to the right with probability p and to the left 
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with probability 1 − p. In our model, p > 1/2 and the individuals 

succeeds if the individual reaches some positive state a before −a . 

With this model, we can pose the problem as follows: under what 

mechanism can two individuals collaborate to increase their indi- 

vidual chances of arriving at the correct destination a when their 

communication skills are reduced to a minimum? 

2. The random walk with absorbing barriers 

In a random walk with absorbing barriers in Z an individual 

moves along the lattice 

Z = { 0 , ±1 , ±2 , ±3 ... ± a } 
moving to the right at each time step with probability p or to the 

left with probability 1 − p. The process stops when the individual 

reaches ± a . It is known as gambler’s ruin problem . If a is the cor- 

rect destination we can assume the individual is more prone to 

move in that direction so p > 1/2. An individual starting at 0 will 

be absorbed eventually at −a (ruin) or a (win). The probability of 

winning is: 

Q(a, p) = 

[
1 + 

(
1 

p 
− 1 

)a 
]−1 

, 

which is increasing in a [see 5 , pp. 345–346]. 

3. The cooperative random walk 

In an effort to model cooperation, we introduce the Cooperative 

Random Walk (CRW). The position at time t are X ( t ) and Y ( t ) for 

each individual. In our model, at time t one individual is selected 

at random to move. This individual, with probability 1 − θ moves 

according to a random walk and with probability θ moves one unit 
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Fig. 1. Progression of the position of both individuals after 200 movements, for p = 0 . 53 and θ values of 0, 0.1 and 0.2 Step number runs across the vertical axis (top to 

bottom). Both individuals start at 0. 

towards the position of the other. Thus, θ plays the role of the ag- 

gregation effect. In our model we assume that if X(t) = Y (t) , then 

both individuals will stay in the same position with probability θ
or with probability 1 − θ one of them will move according to a 

random walk. 

While in the random walk, the process stops when an individ- 

ual reaches one of the boundaries, in the CRW, we do not stop the 

movement of an individual when it reaches one of the boundaries 

since then its position is fixed and would attract the other to its 

position permanently. To avoid this effect, we modified the pro- 

cess so that it stops the first time both individuals are outside the 

interval (−a, a ) , that is, the process stops at the minimum t such 

that 

| X (t) | ≥ a, | Y (t) | ≥ a 

The CRW model lies within the realm of game theory [3,12] . Co- 

operative games are defined as games in which groups of players 

are formed and organize in some way to take a decision that will 

lead the group to win or lose [4,9] . Sequential games are games in 

which the outcome of the game is defined only after a series of al- 

ternating decisions between players [1,8] . Although both fields are 

vast and a lot of literature has been published on these topics sep- 

arately, especially on non-cooperative sequential games, literature 

is scarce regarding models of sequential decisions taken by coop- 

erating individuals. It is relevant to differentiate between the Co- 

operative Random Walk with the correlated Wiener process [see 15 ]. 

In the correlated Wiener process, two individuals at positions X ( t ) 

and Y ( t ) at time t change their position at time t + 1 to X(t) + x 

and Y (t) + y, respectively, where x and y are correlated random 

variables. The parameter ρ measures the correlation between x and 

y . When ρ = 1 then x = y and the distance between both individu- 

als is constant, equal to their initial distance, that is, X (0) and Y (0). 

On the other hand, in the CRW when t → ∞ , an aggregation ef- 

fect of 1 would imply that regardless of the initial amount of sep- 

aration, both individuals tend to be together. This is an important 

difference: although each model implicitly assumes some amount 

of communication, in the correlated Wiener processes, the aggre- 

gation effect is more a mimicry effect that reflects the similarity 

of the direction and amount of motion of both individuals, thus, 

the correlation coefficient ρ may be used to model the amount of 
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