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a b s t r a c t 

We considered a chain-binomial epidemic model not conferring immunity after infection. Mean field dy- 

namics of the model has been analyzed and conditions for the existence of a stable endemic equilibrium 

are determined. The behavior of the chain-binomial process is probabilistically linked to the mean field 

equation. As a result of this link, we were able to show that the mean extinction time of the epidemic 

increases at least exponentially as the population size grows. We also present simulation results for the 

process to validate our analytical findings. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

A chain binomial epidemic model has been developed at the 

beginning of 20 th century by Reed and Frost. The model is widely 

used in the literature (see for example [1] ) and its simplicity stim- 

ulated detailed simulation studies [2] . Jacquez [3] criticized the 

classical formulation of the Reed–Frost model in terms of consis- 

tency and reasonability of its assumptions. This critique was ini- 

tiated by the dimensional analysis of Reed–Frost equation. He fol- 

lowed suggestions of [1] and properly reformulated a more gen- 

eral epidemic model by using probability generating functions of 

discrete distributions for the number of contacts per person. 

Longini [4] modified the classical Reed–Frost process to be able 

to model diseases such as gonorrhea, rotavirus, meningitis and rhi- 

novirus in which reinfection take place. The model assumes that 

there is no removed state so that the sum of the number of in- 

fected individuals ( I) and of susceptible individuals ( R ) in the pop- 

ulation remains constant. If the population consists of N individu- 

als then the transition probabilities are as follows: 

P r ( I t+1 = x t+1 |I t = x t ) 

= 

(
N − x t 

x t+1 

)
(1 − q x t ) x t+1 q x t (N−x t −x t+1 ) . (1) 

Here, q is the probability that a susceptible individual escapes from 

the infection when there is only one infected person in the popu- 

lation. Since this model assumes that there is no immunity against 

the disease, it may give rise to the existence of an endemic equi- 

librium. In fact, the mean dynamics of stochastic model (1) has an 
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endemic equilibrium under the condition that the mean number of 

contact per person is larger than one (see for example [5] ). 

While some probabilistic properties of this model has been 

given in [4] , an analytical study on the extinction time of the pro- 

cess remains untouched. The very same problem has been high- 

lighted by Longini [6] as follows: 

“An interesting analytical question involves the study of the mean 

stopping time for the endemic process. ”

Mean extinction time of a birth-death type epidemic model has 

been studied by Kryscio and Lefévre [7] for large populations and 

it has been shown that mean extinction time is exponentially in- 

creasing in population size. In addition, there are other approaches 

to study mean absorption times for stochastic population models. 

For instance, a classical result which applies to all discrete time fi- 

nite Markov chains regarding mean hitting times is given by Norris 

[8, Theorem 1.3.5] . In ecology literature, Monte-Carlo simulations 

are used widely (see e.g. [9,10] ) due to easiness of implementation. 

A different approach to obtain analytical results concerning mean 

extinction times is to write down the master equations and solve 

them numerically [11,12] . Lastly, diffusion approximations are used 

in the literature to derive a formula for mean time to extinction 

[13,14] . 

We modify the model proposed by Jacquez [3] for infectious 

diseases not conferring immunity following infection as done by 

Longini [6] and study extinction times analytically. To be able to 

work on this problem, we use an unconventional method, namely 

deterministic approximations. For chain binomial models, deter- 

ministic approximations have been studied by Weiß and Pollett 

[15] and Buckley and Pollett [16] as limit theorems. Thus these 

approximations are valid only for large population sizes. Here 

we find exponential bounds (decreasing in population size) on 
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deviation probability of trajectories of chain-binomial Markov 

chain and its deterministic approximation. Thus we are able to 

construct a bridge between stochastic model and its mean dynam- 

ics which is valid for any population size. Similar results for con- 

tinuous time and discrete time birth-death type Markov chains has 

been obtained by Darling and Norris [17] and Benaïm and Weibull 

[18] . 

The mean dynamic of the model helps us to determine whether 

there is an endemic equilibrium. Here we are interested in finding 

a lower bound on the extinction time of infection in a general- 

ized chain binomial epidemic model when there exists an endemic 

equilibrium. Using large deviation bounds and properties of deter- 

ministic mean dynamics, we will show that one can find a expo- 

nentially increasing lower bound on the mean absorption time of 

the stochastic model. 

The paper is organized as follows. We begin by detailing our 

stochastic model and its mean dynamics in Section 2 . In Section 3 , 

we give some useful results concerning the deterministic mean dy- 

namics. In Section 4 , we obtain large deviation bounds and use this 

result to find a lower bound on mean extinction time when the 

process is endemic. In this section, we also present some simu- 

lation results verifying our theoretical findings. Section 5 summa- 

rizes our conclusions. 

2. Stochastic model and its deterministic counterpart 

Given a contact of a suspectible in period t , the probability that 

it is with an infective is ı t = I t / (N − 1) where I t denotes the num- 

ber of infectives in a population of size N . If an individual makes k 

contacts in one time step then the probability that none of these 

contacts is with infectives is (1 − ı t ) 
k . Therefore the probability 

that at least one of the contacts is with an infective is 1 − (1 − ı t ) 
k . 

More generally, the probability that no effective contact with sus- 

ceptibles can be taken as a function of 1 − ı t . To define the func- 

tion we follow the method suggested by [1] i.e. we assume that 

this function is a probability generating function of a discrete dis- 

tribution and has the following form: 

f (x ) = 

∞ ∑ 

k =0 

p k x 
k (2) 

where p k is the probability that a suspectible makes k contacts 

during a time interval. Thus in our model the rate of contact de- 

pends on the frequency of infectives. In other words, the per capita 

force of infection increases with the ‘frequency’ of infectives. Thus 

this model has a frequency dependent transmission term as de- 

scribed by [19] . For density dependent models, in contrast, per 

capita force of infection increases not only with the number of 

infectives but also with the population size in an area occupied 

by the population. Hence, one can easily observe that the classical 

encemic chain-binomial model proposed by Longini [4] has a den- 

sity dependent transmission term (see Example E1 below or [3] ). 

We consider a model not conferring immunity following infec- 

tion as done by Longini [4] . Hence, we assume that all infected in- 

dividuals I t at time t will return to suspectible class at time t + 1 . 

In this case, there is no removed state so that S t + I t = N for any 

N ∈ N . Therefore the number of new invectives at time t + 1 is de- 

termined by the following conditional probability distribution: 

P r(I t+1 = x t+1 | I t = x t ) 

= 

(
N − x t 

x t+1 

)
(1 − f (1 − ı t )) 

x t+1 ( f (1 − ı t )) 
N−x t −x t+1 . (3) 

Clearly the mean dynamics for I t is given by 

E(I t+1 | I t ) = (N − I t )(1 − f (1 − ı t )) . 

To be able to obtain a scaled difference equation, divide both sides 

by N − 1 . Then we get the following logistic equation: 

i t+1 = (a N − i t )(1 − f (1 − i t )) =: g(i ) (4) 

where a N = N/ (N − 1) denotes the carrying capacity as a function 

of population size N . Note that the sequence a N ∈ (1 , 3 2 ] for N ≥ 3. 

We would like to catalog Eq. (4) for different discrete distri- 

butions of the number of contacts. We consider two examples of 

discrete distributions as follows. 

E1 Poisson distribution : Suppose that the number of contacts has 

a Poisson distribution with mean μP . In this case, the prob- 

ability generating function of this distribution is given by 

f P (s ) = exp (−μP (1 − s )) . 

Hence, one can write Eq. (4) as follows: 

i t+1 = (a N − i t )(1 − exp (−μP i t )) . 

Note that above equation takes the form of the logistic epi- 

demic model studied by Cooke et al. [5] as N → ∞ . In 

addition there are some similarities to the endemic Reed–

Frost model studied by Longini [4] . However, one can easily 

observe that the Reed–Frost parameter should be taken as 

q = exp (−Nμp ) . Hence this parameter is not dimensionless 

as pointed out by Jacquez [3] . 

E2 Binomial distribution : Since Poisson distribution is defined 

on positive integers and zero, it allows unbounded number 

of contacts. Hence we consider the binomial distribution as 

an example of distributions defined on bounded intervals. 

Suppose we divide the infectious period into n equal sub- 

intervals. Suppose also that in each sub-interval only one 

contact occurs between people. Let p be the probability of 

contact in one sub-interval and assume Bernoulli trials. Then 

the number of contacts follow a binomial distribution with 

mean μb = np then the probability generating function is 

given by 

f b (s ) = (ps + q ) n 

where q = 1 − p. Thus Eq. (4) can be written as 

i t+1 = (a N − i t )(1 − (1 − pi ) n ) . 

Here we would like to note that other discrete distributions 

such as geometric distribution can also be considered as done by 

Jacquez [3] or Ng and Orav [20] . Note also that probability gener- 

ating functions of these distributions are sufficiently smooth. 

Before proceeding to the next section we state our standing as- 

sumptions as follows: 

Assumption 1. 

• There are at least three people in the population i.e. N ∈ N 3 = 

N \{ 1 , 2 } . 
• A random variable with probability generating function f has its 

first and second moments. 

3. Behavior of the deterministic model 

We begin this section by defining the basic reproductive num- 

ber μ as follows: 

μ = f ′ (1) . 

The mean number of contacts for stochastic model (3) is equal to 

the reproductive number for deterministic model. 

The following result determines the effect of the basic repro- 

ductive number μ and the population size N on the global stability 

of the deterministic Eq. (4) 

Theorem 2. The following statements hold for any initial condition i 0 
∈ (0, 1). 



Download English Version:

https://daneshyari.com/en/article/4499822

Download Persian Version:

https://daneshyari.com/article/4499822

Daneshyari.com

https://daneshyari.com/en/article/4499822
https://daneshyari.com/article/4499822
https://daneshyari.com

