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a b s t r a c t 

This article considers a new mathematical model for the description of multiphasic cell growth. A linear 

hybrid model is proposed and it is shown that the two-parameter logistic model with switching param- 

eters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The 

growth phases are modeled as continuous processes, while the switches between the phases are consid- 

ered to be discrete events triggering a change in growth parameters. This framework provides an easily 

interpretable model, because the intrinsic behavior is the same along all the phases but with a different 

parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent 

more complex nonlinear models. The growth phases and parameters from datasets of different microor- 

ganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae , and 

Saccharomyces cerevisiae , were inferred. The segments and parameters obtained from the growth data are 

close to the ones determined by the experts. The fact that the model could explain the data from three 

different microorganisms and experiments demonstrates the strength of this modeling approach for mul- 

tiphasic growth, and presumably other processes consisting of multiple phases. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Many microorganisms exhibit multiphasic growth behavior. A 

special case of multiphasic growth caused by substrate preference 

is diauxic growth, which was first studied in the 40’s by Monod 

[14,15] . This phenomenon arises when an organism is growing 

on a medium consisting of two (or more) different types of car- 

bon and energy sources. Among others, Streptococcus pneumoniae 

shows diauxic growth on mixed medium. The organism first con- 

sumes the substrate that supports the fastest growth (preferred 

substrate) followed by consumption of the remaining secondary 

carbon source(s). Theoretically, the process includes two types of 

phases: exponential growth and diauxic lag. The bacteria process 

the preferred substrate in an initial exponential growth phase. 

Then a diauxic lag is followed, when the bacteria do not grow sig- 

nificantly but synthesize enzymes in order to be able to process 
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the next medium in another exponential growth phase. The cycle 

repeats until no further carbon sources are available. 
Yeast ( Saccharomyces cerevisiae ) shows another type of multi- 

phasic growth, where the diauxic behavior is caused by ethanol 

produced by the fungi itself. The preferred source of carbon and 

energy of the organism is glucose, but while metabolizing glu- 

cose, the cells release ethanol in the medium. When the glucose 

source becomes limiting, the cells exhibit a so called diauxic shift 

by switching their metabolism to aerobic utilization of ethanol. 

Compared to glycolysis, the ethanol phase is characterized by de- 

creased growth rate [10] . 
Inhibitions or metabolic burdens can also cause multiphasic 

growth. In the Lactococcus lactis example considered [16] , the 

biphasic growth behavior can be derived from a metabolic burden 

due to overexpression of proteins or a metabolic imbalance caused 

by accumulation of a toxic intermediate. 
In order to infer the properties of the process, such as maximal 

growth, the time-series has to be segmented and a model has to 

be fitted to each segment. In many cases, segmentation and fitting 

is still done by hand (usually fitting a linear model to the loga- 

rithm of selected points) and checked visually by the experts. De- 

spite tools for automated fitting of biological growth curves like 

BGFit [22] are readily available online for fitting bacterial growth 
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data, they do not consider multiple phases. In this paper a novel 

approach is considered for multiphasic cell growth segmentation 

and modeling using hybrid linear systems. 

A number of different Ordinary Differential Equation(ODE) 

models were proposed to describe the growth of biomass on differ- 

ent species starting with the famous hyperbolic Michelis–Menten 

like equations of [15] to the more sophisticated recent develop- 

ments. A simple idea to address multiphasic growth is to introduce 

a lag representing the time-shift between different logistic models 

[2] . Some approaches include additional state variables incorporat- 

ing further factors in the model, like enzyme levels or substrate 

concentrations [5,6,8,20] , however this also causes an increased 

number of parameters, where usually a subset of the parameters 

is not directly estimated but taken from the literature [5,6] . 

Hybrid models consist of both continuous and a discrete states 

(parameters) [13] . The advantage of using hybrid systems is that 

the dynamics typically can be modeled with continuous state 

evolution and the transitions between submodels are represented 

by the changes of discrete states. From strictly computational 

perspective, it is plausible to interpret the multiphasic growth 

phenomenon as a hybrid system, because the same model may 

describe all the phases of the process, while the parameters vary 

between the phases. 

Here a switched hybrid linear model is proposed that is able 

to explain multiphasic growth data. The model is continuous, 

and the switches between the phases are modeled with discrete 

events. Compared to previous models, the advantages of the hybrid 

model is its linearity, simple and straightforward interpretability, 

the reduced number of parameters, yet without loss of descriptive 

power. 

2. Methods 

In this section, first the proposed model for multiphasic growth 

is described, then the identification algorithm is reviewed, finally 

the biological datasets are introduced. A sample MATLAB imple- 

mentation of the methodology and the proposed model is freely 

available is freely available under the terms of GNU Public License 

(GPLv3) from the authors webpage: http://andrashartmann.info/ . 

The goal of modeling is to accurately describe a given process. 

Hereafter, a first-order Switched affine AutoRegressive model with 

eXogenous inputs (SARX) model [17] is proposed for multiphasic 

growth. SARX models are switched extensions to affine linear au- 

toregressive models, defined as the concatenation of several sub- 

models. Each submodel corresponds to an AutoRegressive model 

with eXogenous inputs (ARX) of fixed dimension. Consider the fol- 

lowing system in input-output form 

y (t) = θ T 
η(t) 

[
ϕ(t) 

1 

]
+ ε(t) (1) 

ϕ(t) = [ y (t − 1) . . . y ( t − n a ) u ( t) . . . u ( t − n b )] T , (2) 

where the input u ( t ) is observed and so is the output y ( t ) which 

is corrupted by an additional noise term, ε( t ). When fitting the 

model, y ( t ) corresponds to the actual observations. The regres- 

sion vector ϕ( t ) of dimension n = n a + n b consists of past mea- 

surements and inputs. The notation �(t) = [ 
ϕ(t) 

1 
] is introduced 

for the extended regression vector. The time-dependent parame- 

ter vector θ (t) = θT 
η(t) 

∈ R 

n at each time-instance belongs to a set 

� = { θ1 , . . . , θK } of cardinality K , representing the submodel set. 

The discrete finite range function, η(t) : R → { 1 , . . . , K } indicates 

which submodel generates the output at time-instance t , and is re- 

ferred as switching sequence or discrete state. 
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Fig. 1. Simulation example with different parameters. The arrows point towards 

growing parameters. Also the darker lines represent larger parameter values. 

2.1. Logistic growth 

As shown in [12] , the discrete Verhulst logistic model for 

monophasic growth [24] has a linear representation, therefore 

a switching extension of the model can be corresponded to a 

SARX model. Hereafter, a first-order SARX model is proposed 

for multiphasic growth by showing that the continuous logistic 

model also can be represented by an affine AutoRegressive model 

with eXogenous inputs (ARX). Consequently, when considering 

switching parameters, the model can be represented by SARX. It is 

more convenient to work with the continuous model, because no 

discretization is needed. 

The starting point of the model is the continuous two- 

parameter logistic model. 

d x 

d t 
= 

˙ x (t) = rx (t ) 

(
1 − x (t ) 

C 

)
, (3) 

where the state variable x represents the biomass, the parameter r 

refers to the maximum growth rate, and C is the carrying capac- 

ity (level of saturation). To identify logistic models of longer lag 

time, some authors [18,24] suggest to fit the logistic model log- 

measurements log( x ). Here, no log-transformation was applied be- 

cause no long lag times were expected in the beginning of growth 

phases. Instead, lag times are considered to be separate phases. 

The differential equation in the form shown in Eq. (3) is nonlin- 

ear. However, since the biomass is strictly positive ( x > 0), both 

sides of Eq. (3) can be divided by x ( t ). Applying the chain rule for 

the derivation, this also corresponds to the logarithmic derivative 

˙ x (t) 

x (t) 
= r 

(
1 − x (t) 

C 

)
= 

d log x 

d t 
, (4) 

with the substitutions of variables 

y (t) = 

˙ x (t) 

x (t) 
; θ = 

[
− r 

C 

r 

]
, (5) 

the model may be represented by the following linear autoregres- 

sive form 

y (t) = θ T 

[
x (t) 

1 

]
. (6) 

The flexibility of the model is shown in Fig. 1 , by simulating with 

different parameters r and C . 
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