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a b s t r a c t 

Motivated by the desire to study evolutionary responsiveness in fluctuating environments, and by the 

current interest in analyses of evolution that merge notions of fitness maximization with dynamical sys- 

tems concepts such as Lyapunov functions, this paper models natural evolution with a simple stochastic 

dynamical system that can be represented as a Markov chain. The process maximizes fitness globally via 

search and has links to information and entropy. These links suggest that a possible rationale for evolu- 

tion with the exponential fitness functions observed in nature is that of optimally-efficient search in a 

dynamic environment, which represents the quickest trade-off of prior information about the genotype 

search space for search effort savings after an environment perturbation. A Lyapunov function is also pro- 

vided that relates the stochastic dynamical system model with search information, and the model shows 

that evolution is not gradient-based but dwells longer on more fit outcomes. The model further indicates 

that tuning the amount of selection trades off environment responsiveness with the time to reach fit 

outcomes, and that excessive selection causes a loss of responsiveness, a result that is validated by the 

literature and impacts efforts in directed evolution. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

1.1. Background 

Evolution has long been studied as a natural optimization 

method [1–3] that may explain both observed phenotype (i.e., 

physical and behavioral trait) diversity [1,4] and optimal pheno- 

type adaptation to an environment [5] . The method is considered 

by evolutionary ecologists to maximize fitness through natural se- 

lection [6] regardless of the definition of fitness [7] or the specifics 

of the map [8] from genotype (i.e., heritable genetic composition) 

to phenotype and thence to fitness. The method’s power has been 

experimentally harnessed by the synthetic biology technique of di- 

rected evolution [9] to produce unnatural phenotypes [10–12] us- 

ing tailored selective pressures and designed environment dynam- 

ics. As an optimization method, evolution has often been found to 

embody or cause trade-offs [13,14] that may be further enhanced 

by variations of the environment [15] . 

Evolution has also been viewed as a stochastic [3,16,17] search 

[18] process, with the results of stochasticity analyzed in fluc- 

tuating environments [19–21] and modeled by the related con- 
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cepts of entropy [3,22,23] and information [24,25] . In its stochas- 

tic form, the process of evolution has been borrowed by computer 

science to perform optimization in the guise of genetic algorithms 

[26–28] (which can be modeled by Markov chains [29] ) and evolu- 

tion strategies [30–33] (which can be successfully deployed in dy- 

namic environments [34] to also obtain biological insight [35] akin 

to genetic algorithms [36] ). 

But despite the many studies and models of evolution, there 

continue to be ‘differing views about the efficiency, or optimality, 

of the adaptation model’ of natural selection as a primary driver of 

evolution [37] , and there is thus a still-open question about the op- 

timality of the evolutionary process in addition to a question about 

whether natural selection maximizes fitness (the recent [38] has 

more on the latter question). Even the meaning of fitness max- 

imization is unclear [38] : four varieties that are regarded by bi- 

ologists for a given population are (1) the equivalence between a 

stable genetic equilibrium and mean fitness maximization, (2) the 

increase in mean fitness by natural selection when not at genetic 

equilibrium, (3) the equivalence between a stable genetic equilib- 

rium and the adoption of a phenotype by all organisms that max- 

imize individual fitness, and (4) the increase in the number of or- 

ganisms adopting a phenotype that maximizes individual fitness by 

natural selection when not at genetic equilibrium [38] . 

Nevertheless, to account for, as [38] puts it, ‘some cases [where] 

evolution by natural selection has led to traits that approximately 
http://dx.doi.org/10.1016/j.mbs.2016.03.002 
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maximize fitness within a set of feasible alternatives [6,37,39,40] ,’ 

fresh analyses of evolution have been pursued, using inclusive 

fitness [41,42] for instance. The ongoing Formal Darwinism (FD) 

project [43–46] calls for ‘a new kind of argument...to link equa- 

tions of motion on the one hand to optimization programs on the 

other, and a major point is that the biologist’s concept of fitness 

maximization is not represented by concepts from dynamical sys- 

tems such as Lyapunov functions and gradient functions’ [45] . The 

FD project seeks to axiomatize fitness and link equilibrium con- 

cepts of population genetics to solution concepts of optimization 

programs [46] . The FD project tries to vindicate the “individual as 

maximizing agent analogy” [38,45,47] and show that phenotypes 

present in an equilibrium state are optimal because no other phe- 

notype does better in that equilibrium state. 

1.2. Goals, biological meaning of employed terms, and preview of 

results 

This paper provides a simple stochastic dynamical system 

model of natural evolution that can be represented by a discrete- 

time homogeneous Markov chain (see Appendix A for a back- 

ground on Markov chains), with the initial model motivation con- 

sisting of examining responsiveness in the immediate aftermath of 

an environment fluctuation. The goals of the model are to under- 

stand what happens to the evolution process in a dynamic envi- 

ronment rather than to determine exact phenotype outcomes, and, 

like the FD project, to specify the form of the fitness function as 

well as to investigate the effects of changes in process dynamics on 

understood equilibrium concepts within the context of optimiza- 

tion. 

No constraints are imposed on the meaning of fitness in this 

paper, and the model is initially developed with an abstract fitness 

function that ascribes value to individual phenotypes. Because the 

population size is restricted to one at every time step with this 

model for analytical simplicity, and because the abstractness of the 

fitness function imposes no restrictions on the constituents of a fit- 

ness valuation, it is possible to interpret the results in this paper 

in the context of either population mean fitness (which is trivially 

equivalent here to the fitness of the population’s sole phenotype at 

a time step) or individual fitness (which includes the fitness value 

effect of strategies pursued by a phenotype, a possibility that is al- 

lowed by the abstract fitness function). Since model extensions will 

lift the unity population size restriction so that the trivial equiv- 

alence described above no longer exists, an interpretation of in- 

dividual fitness is a favored one. But for this paper at least, both 

population mean fitness and individual fitness are mathematically- 

plausible meanings of fitness. 

The dynamics of the model, which assumes discrete generations 

and single reproductive events per individual per time step, em- 

body changes caused by natural selection at each time step. Fit- 

ness maximization in this paper is also open to both dynamical 

interpretations debated by biologists: a process of increasing pop- 

ulation mean fitness, or a process of increasing adoption of a phe- 

notype that maximizes individual fitness. These interpretations will 

be elaborated upon with respect to the model where appropriate. 

Natural selection is taken to have the traditional meaning: local 

competition between phenotypes in a population, with phenotypic 

traits arising from genotypes in a way that includes environment 

effects [48] . 

Unsurprisingly, the local selection that is described by the 

model maximizes fitness globally via search, and the process also 

has links to the concepts of information and entropy, although 

these links are not imposed a priori . What is surprising is that, 

when determining the form of the fitness function, a possible ra- 

tionale for the evolutionary process emerges. Borne out by the 

kinds of fitness functions that exist in nature, this rationale con- 

stitutes optimal search efficiency in a dynamic environment, and 

it represents the quickest trade-off of prior information about the 

search space for search effort savings after an environment fluc- 

tuation occurs. Moreover, a Lyapunov function exists to relate the 

dynamical representation of the fitness-maximizing evolution pro- 

cess with search information. It is further shown that this dynami- 

cal process dwells longer on more fit outcomes, whatever they may 

be, instead of being gradient-based. 

Additionally, insights into the effects of varying levels of selec- 

tion are obtainable from the model, such as a trade-off between 

responsiveness to a dynamic environment and the time to reach 

a fit outcome. A related detrimental result (which stipulates that 

excessive selection causes a loss of responsiveness) is shown to 

be corroborated by numerous literature examples. This result has 

implications for the fruits of directed evolution efforts. Lastly, the 

similarities and differences between the model’s Markov chain op- 

timization method and other methods that are used in computer 

science (genetic algorithms, evolution strategies, and simulated an- 

nealing [49] ) are briefly described, with the model in this paper re- 

capturing a known Markov chain Monte Carlo technique that was 

originally proposed to model physical phenomena [50] . 

2. Methods 

2.1. Problem definition 

As others have done before us (e.g., [18] ), let us consider evolu- 

tion to be a form of stochastic search, which looks for some geno- 

type(s) that result(s) in some desirable phenotype(s). Let the set 

of genotypes, X , be a finite albeit large one, consisting of geno- 

types x i , 1 ≤ i ≤ n . As we shall see in Section 3.3 , the fact that X is 

fixed does not preclude any “evolution of evolvability” [51] in a dy- 

namic environment, a concept that we take to be a change in the 

ability to respond to a selection process. Let the set of phenotypes 

be called Z . Let the genotype-phenotype mapping be denoted by z , 

i.e., z : X → Z , which is a function that is very important to specify 

when determining the phenotype outcomes of evolution, but since 

we are more interested in insights from a model of evolution, let 

us simply say that z is an unknown function that can change with 

time because it includes the effects of a changing environment. For 

notational simplicity, we will omit explicitly denoting a function’s 

dependence on time. 

Suppose that there exists some desirable phenotype z des for a 

particular environment (possibly, but not necessarily, a phenotype 

that is “best” for its environment); of course, z des can also change 

with time to reflect environment changes, and we may not know 

z des . We will assume that it is possible to measure differences be- 

tween any two phenotypes, i.e., Z is a metric space. Let the dis- 

crepancy between the phenotype that results from a genotype x , 

which is z ( x ), and the desirable, possibly unknown, phenotype z des 

be denoted by ‖ z(x ) − z des ‖ . 
Since we model evolution as a stochastic search process, we 

consider it to produce a probability mass function φX over the set 

of genotypes, φX : X → R 

+ , and our model will provide dynamic 

transition laws that cause X to be distributed according to φX . We 

have postulated that evolution searches for a desirable phenotype 

(whatever “desirable” means), so on average, the process results 

in 

E φX 
[ ‖ z(x ) − z des ‖ ] = 0 . (1) 

Let y (x ) = ‖ z(x ) − z des ‖ , so that we can rewrite the above as 

E φX 
[ y (x )] = 0 , where y inherits the time-dependence of z . Because 

we do not know z , and we may not know z des , y ( x ) is effectively an 

unknown function for which we know an expectation. 

Let us now consider phenotype fitness, however one chooses 

to define fitness. Let us simply say that there exists a function f 
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