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a b s t r a c t 

In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, 

which is based on the assumption that the cancer cells switch phenotypes between a proliferative and 

motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of 

partial differential equations, which exhibits travelling wave solutions whose wave speed depends cru- 

cially on the rates of phenotypic switching. We show that under certain conditions on the model pa- 

rameters, a closed form expression of the wave speed can be obtained, and using singular perturbation 

methods we also derive an approximate expression of the wave front shape. These new analytical results 

agree with simulations of the cell-based model, and importantly show that the inverse relationship be- 

tween wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic 

switching is considered. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The brain tumour glioblastoma kills approximately 80 0 0 0 peo- 

ple per year worldwide, and these patients have, despite decades 

of intense research, a dismal prognosis of approximately 12 months 

survival from diagnosis. The standard treatment is surgery, fol- 

lowed by radiotherapy and chemotherapy. However, one of the ma- 

jor hurdles in treating malignant glioblastomas surgically is their 

diffuse morphology and lack of distinct tumour margin. The high 

migration rate of glioblastoma cells is believed to be a main driver 

of progression [1] , but precise knowledge of how glioblastoma 

growth is shaped by the underlying cellular processes, including 

cell migration, proliferation and adhesion, is still lacking, hamper- 

ing the prospects of novel therapies and drugs. 

One characteristic of glioblastoma cells which has gained con- 

siderable attention is the ‘go or grow’—hypothesis, which states 

that proliferation and migration are mutually exclusive phenotypes 

of glioblastoma cells [1] . This observation was recently confirmed 

using single cell tracking [2] , where individual cells were observed 

to switch between proliferative and migratory behaviour. In order 

to understand and control the growth of glioblastomas we hence 

need an appreciation of how the process of phenotypic switching 

influences glioblastoma growth and invasion. This paper presents a 
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starting point for this understanding and reports on an analytical 

connection between cell-scale parameters and the properties of tu- 

mour invasion, which could be used for tailoring treatment based 

on single-cell measurements. 

2. Previous work 

The starting point of glioblastoma modelling was the seminal 

work of Murray and colleagues [3,4] , which made use of the Fisher 

equation 

∂u 

∂t 
= D 

∂ 2 u 

∂x 2 
+ ρu (1 − u ) (1) 

where u ( x, t ) denotes the density or concentration of cancer cells, 

D is the diffusion coefficient of the cells, and ρ is the growth rate. 

The microscopic process that the above equation describes is that 

of cells moving according to a random walk, and simultaneously 

dividing at rate ρ . It can be shown that the Fisher equation ex- 

hibits travelling wave solutions, which medically corresponds to a 

tumour invading the healthy tissue. These solutions U ( z ) remain 

stationary in a moving frame with coordinates z = x − ct, and it 

can be shown that velocity of the invading front is given by c = 

2 
√ 

Dρ . 

Since then many different models of glioblastoma growth have 

been proposed, ranging from game theoretical models [5] , and sys- 

tems of partial differential equations [6] , to individual-based mod- 

els [7] . In particular there has been an interest among modellers 
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in the above mentioned ‘go-or-grow’ hypothesis, and several dif- 

ferent approaches have been utilised. Hatzikirou et al. [8] used a 

lattice-gas cellular automaton in order to investigate the impact of 

the switching between proliferative and migratory behaviour, and 

went on to show that in the corresponding macroscopic (Fisher) 

equation, there is a tradeoff between diffusion and proliferation re- 

flecting the inability of cells to migrate and proliferate simultane- 

ously. Similar results were obtained by Fedotov and Iomin [9] but 

with a different type of model known as continuous time random 

walk model, where the movement of the cells is not constrained 

by a lattice. The effects of density-driven switching were investi- 

gated with a two-component reaction diffusion system in a study 

by Pham et al. [10] , and they could show that this switching mech- 

anism can produce complex dynamics growth patterns usually as- 

sociated with tumour invasion. 

In this paper we will be concerned with the analysis of an 

individual-based model put forward by Gerlee and Nelander [11] . 

In the initial study, it was shown that the average behaviour of 

the cell-based model can be described by a set of coupled PDEs, 

similar to the Fisher equation, which exhibit travelling wave solu- 

tions. A combination of analytical and numerical techniques made 

it possible to calculate the wave speed of the solutions, and it was 

shown to closely approximate the velocity of the tumour margin 

in the cell-based model. 

In this paper we extend the analysis of the model, and show 

that if one assumes that cell migration occurs much faster than 

proliferation, then a closed form expression of the wave speed 

can be obtained, and also that an approximate solution for the 

front shape can be derived. The paper is organised as follows: 

in Section 3 we present the cell-based model and its continuum 

counter-part. Section 4 is concerned with obtaining a closed form 

expression for the wave speed, and in Section 5 we derive an 

asymptotic solution to the system. Finally we conclude and discuss 

the implications of the results in Section 6 . 

3. The model 

The cells are assumed to occupy a d -dimensional square lattice 

containing N 

d lattice sites, and each lattice site either is empty or 

holds a single glioma cell. For the sake of simplicity we do not 

consider any interactions between the cancer cells (adhesion or re- 

pulsion), although this could be included [12] . 

The behaviour of each cell is modelled as a time continuous 

Markov process where each transition or action occurs with a cer- 

tain rate, which only depends on the current and not previous 

states. Each cell is assumed to be in either of two states: proliferat- 

ing or migrating, and switching between the states occurs at rates 

q p (into the P-state) and q m 

(into the M-state). A proliferating cell 

is stationary, passes through the cell cycle, and thus divides at a 

rate α. The daughter cell is placed in one of the empty neighbour- 

ing lattice sites (using a von Neumann neighbourhood) with uni- 

form probability across all empty neighbouring sites. If the cell has 

no empty neighbours cell division fails. A migrating cell performs 

a size exclusion random walk, where each jump occurs with rate ν
(with dimension s −1 ). When motion is initiated the cell moves into 

one of the empty neighbouring lattice sites with uniform probabil- 

ity across all empty neighbouring sites. If the cell has no empty 

neighbours cell migration fails. 

Lastly, cells are assumed to die, through apoptosis, at a rate 

μ (with dimension s −1 ) independent of the cell state. This model 

is naturally a gross simplification of the true process of glioblas- 

toma growth, and for further discussion on this we refer the reader 

to [11] . 

The time scale is chosen such that α = 1 , which means that 

all other rates are given in the unit ‘cell cycle −1 ’. Experimental re- 

sults suggest that the average time for the cell cycle is 16–24 h [1] , 

Fig. 1. A schematic of the continuous-time Markov chain which controls the be- 

haviour of each cell in the individual-based model. The cells are either in a prolifer- 

ative state (P) in which they divide at rate α or in a motile state where they jump 

between lattice points at rate ν . The switching between the two states occurs at 

rate q p and q m . 

and that the phenotypic switching occurs on a faster time scale 

than cell division [2] , roughly on the order of hours, implying that 

q p, m 

∈ (10, 30). The death rate for an untreated tumour is on the 

other hand much smaller than the proliferation rate, approximately 

μ ∼ 10 −1 − 10 −2 . Tracking of single cells has shown that glioblas- 

toma cells move with a velocity of up to 25 cell sizes/cell cycle [2] , 

and consequently we set ν = 25 . 

The stochastic process behind the phenotypic switching is de- 

picted schematically in Fig. 1 . When comparing the cell-based 

model with the analytical results we simulate the model in d = 1 

dimensions. Each simulation is started with a single cell in the 

proliferative state at grid point i = 0 . We record the cell density 

at t = T max / 2 and t = T max , and by performing a large number of 

simulations we estimate the occupation probabilities P 

t 
i 

and M 

t 
i 

of having a proliferating/migratory cell at lattice site i at time t . By 

finding the lattice point where P 

t 
i 

+ M 

t 
i 
= 1 / 2 for t = T max / 2 and 

T max we can calculate speed of the advancing front. If several such 

lattice points exist we pick the one with the smallest i . Typically 

the probabilities are estimated from 20 different simulations and 

T max = 100 cell cycles. 

3.1. The continuum approximation 

The system of PDEs that describes the average behaviour of 

the cell-based model in one dimension was derived in Gerlee and 

Nelander [11] and is given by: 

∂ p 

∂t 
= D α(1 − p − m ) 

∂ 2 p 

∂x 2 
+ αp(1 − p − m ) − (q m 

+ μ) p + q p m 

(2) 

∂m 

∂t 
= D ν

(
(1 − p) 

∂ 2 m 

∂x 2 
+ m 

∂ 2 p 

∂x 2 

)
− (q p + μ) m + q m 

p (3) 

where p ( x, t ) and m ( x, t ) is the density of proliferating and motile 

cells respectively. The diffusion coefficient D α = α/ 2 captures tu- 

mour expansion driven by proliferation, while D ν = ν/ 2 comes 

from the random movement of migratory cells. The wave speed of 

this system can be determined by numerical investigation of the 

corresponding 4-dimensional autonomous system (for details see 

[11] ). Here we show how the system can be simplified and the 

problem reduced to three dimensions, which allows for a closed 

form expression of the wave speed. 
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