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a b s t r a c t

Patterns of different symmetries may arise after solution to reaction–diffusion equations. Hexagonal

arrays, layers and their perturbations are observed in different models after numerical solution to the

corresponding initial-boundary value problems. We demonstrate an intimate connection between pat-

tern formations and optimal random packing on the plane. The main study is based on the following

two points. First, the diffusive flux in reaction–diffusion systems is approximated by piecewise linear

functions in the framework of structural approximations. This leads to a discrete network approximation

of the considered continuous problem. Second, the discrete energy minimization yields optimal random

packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern forma-

tions based on the reaction–diffusion equations is reduced to the geometric problem of random packing.

It is demonstrated that all random packings can be divided onto classes associated with classes of iso-

morphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in

each class of the random packings. If the number of disks per representative cell is finite, the number of

classes of isomorphic graphs, hence, the number of optimal packings is also finite.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Turing mechanism for reaction–diffusion equations mod-

els biological and chemical pattern formations. This approach was

widely discussed in literature and supported by many numeri-

cal examples (see the recent books [2,4,5] and many works cited

therein). Patterns of different symmetries may arise after solu-

tion to reaction–diffusion equations. Hexagonal arrays, layers and

their perturbations are observed in different models after numeri-

cal solution to the corresponding initial-boundary value problems

for nonlinear partial differential equations. However, these mod-

els do not answer the question, why the most frequently observed

patterns are close to the optimal packing structures. Why do the

hexagonal array arise? One can see, for instance, that a resulting

structure can be the hexagonal array disturbed by pentagon inclu-

sions. Is it related to a model approximation or to an inherent fea-

ture of pattern formations?

In the present paper, we try to answer the above questions to

demonstrate an intimate connection between pattern formations

and optimal random packing on the plane. The main study is based

on the following two points. First, the diffusive flux in reaction–

diffusion systems is approximated by piecewise linear functions

in the framework of structural approximations [3,7]. This leads

∗ Corresponding author. Tel.: +48126627864; fax: +48126358858.

E-mail address: mityu@up.krakow.pl

to a discrete network approximation of the considered continu-

ous problem. Second, the discrete energy minimization yields opti-

mal random packing of the domains in the representative cell. The

packed domains are approximated by equal disks. This approach is

described in the bulk of the paper.

Packing problems refer to geometrical optimization problems

[11]. In the present paper, we consider the optimal packing of disks

on the plane in the random statement fitted to the description

of pattern formations. Optimal packing in the classic determinis-

tic statement is attained for the hexagonal array when the packing

concentration holds π√
12

[11]. Computer simulations demonstrate

that random packing have a lower density and depends on the pro-

tocol of the random packing [1].

It is shown in Section 3 that pattern formations lead to the op-

timal random packing problem in the equivalence classes of graphs

obtained by means of the Delaunay triangulation. The justification

of such an approach is based on the observation that solution to

the physical problem of the optimal diffusion implies solution to

the geometrical problem of the packing disks [8]. The unique opti-

mal solution is constructed in each class of the random packings.

If the number of disks per representative cell is finite, the num-

ber of classes of isomorphic graphs, hence, the number of optimal

packings is also finite.

The proposed method to study pattern formations is based

on the minimization of the discrete energy for graph structures

by analytical and numerical methods within treatment of PDE by
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Fig. 1. (a) Dependence of the inhibitor on the spatial variable. (b) Piecewise linear approximation of the inhibitor on a smaller interval (dashed line). The maxima are

approximated by segments Dk and Dj (disks in 2D) and the minima by points Pkj (segments in 2D).

the structural approximation method. Though PDE are not directly

written in the paper, they are implicitly used in estimations of the

local flux between local spatial extrema of the inhibitor.

2. Structural approximation

The Turing mechanism can create temporally stable and spa-

tially non-homogeneous structures. In order to present the main

idea of the structural approximation we consider 1D Schnakenberg

system [5, p. 156]. A typical dependence of the inhibitor on the

spatial variable is displayed in Fig. 1a. It is assumed that such a

dependence can be approximated by a piecewise linear function as

shown in Fig. 1b. The solution of the continuous reaction–diffusion

equations is approximated by the discrete diffusion model with the

constant diffusion fluxes (derivatives of the linear approximations)

between the extrema of the potential.

A similar approximation can be extended to multidimensional

reaction–diffusion equations [9]. In the present paper, we deal with

2D double periodic structures. Let e1 = (e1, 0) and e2 = (e21, e22)

be the translation vectors of the lattice Q = {l1e1 + l2e2 : l1,2 ∈ Z}
where Z denotes the set of integer numbers. Consider the periodic

representative cell

Q0 = {x = t1e1 + t2e2}, 0 < t1,2 < 1}.
For simplicity, we approximate the places of maximal diffusion po-

tential by equal disks Di (i = 1, 2, . . . , N) of radius r centered at the

set of points A = (a1, a2, . . . , aN) displayed in Fig. 2. The maxima of

the diffusion potential are approximated by disks and the minima

by lines. Every line segment Pkj is perpendicular to the segment

(ak, aj), its length holds |Pk j| = 2r and it is divided onto equal parts

by (ak, aj). The described approximations fits for functions of type

shown in Fig. 1. Appendix contains a formal general description of

the approximations.

It is convenient to introduce new distance (metric) as follows.

Two points a, b ∈ R
2 are identified if their difference a − b = l1e1 +

l2e2 belongs to the lattice Q. Hence, the classic flat torus topology

with the opposite sides welded is introduced on the cell Q0. The

distance ‖a − b‖ between two points a, b ∈ Q0 is introduced as

‖a − b‖ := min
l1,l2∈Z

|a − b + l1e1 + l2e2|, (2.1)

where the modulus means the Euclidean distance in R
2 between

the points a and b.

Construct the double periodic Voronoi diagram and the Delau-

nay triangulation corresponding to the set A on the torus Q0 =

Fig. 2. 2D approximation of the inhibitor. The diffusion potential is approximated

by appropriate constants in disks and the diffusion flux between the disks by linear

functions along the edges of the Delaunay triangulation.

∪l1,l2∈Z(Q0 + l1e1 + l2e2). The edges of the Delaunay triangulation

E correspond to linear approximations of the diffusion flux be-

tween disks. The Delauney triangulation of the vertices A con-

sists of straight lines connecting by pairs points of A belonging to

neighbor Voronoi regions.1 Let the neighborhood relation between

two vertexes be denoted by aj ∼ ak or shortly j ∼ k. We call the

constructed double periodic graph (A, E) by the Delaunay graph.

Two graphs are called isomorphic if they contain the same

number of vertices connected in the same way. One of the most

important notation of the present paper is the class of graphs

G = G(A,E) isomorphic to a given graph (A, E).

Let u = (u1, u2, . . . , uN) denote the vector whose components

are the maximal diffusion potentials in the corresponding disks.

The discrete network model for densely packed disks [3,7,10] is

based on the fact that the diffusion flux is concentrated in the

necks between closely spaced inclusions having different poten-

tials. In our model, closely spaced inclusions means the chain disk–

segment–disk (Dk�Pkj�Dj) displayed in Fig. 1b. For two neighbor

1 The terms the Delaunay triangulation and graph used in this paper are slightly

different from the commonly used notations in degenerate cases. For example, con-

sider a square and its four vertices. The traditional Delaunay triangulation has four

sides of the square and one of the diagonals. In our approach, the Delaunay graph

has only four sides.
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