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a b s t r a c t

We generalize a previous simple result by Lande et al. (1999) on how spatial autocorrelated noise, disper-

sal rate and distance as well as strength of density regulation determine the spatial scale of synchrony

in population density. It is shown how demographic noise can be incorporated, what effect it has on

variance and spatial scale of synchrony, and how it interacts with the point process for locations of in-

dividuals under random sampling. Although the effect of demographic noise is a rather complex interac-

tion with environmental noise, migration and density regulation, its effect on population fluctuations and

scale of synchrony can be presented in a transparent way. This is achieved by defining a characteristic

area dependent on demographic and environmental variances as well as population density, and subse-

quently using this area to define a spatial demographic coefficient. The demographic noise acts through

this coefficient on the spatial synchrony, which may increase or decrease with increasing demographic

noise depending on other parameters. A second generalization yields the modeling of density regulation

taking into account that regulation at a given location does not only depend on the density at that site

but also on densities in the whole territory or home range of individuals. It is shown that such density

regulation with a spatial scale reduces the scale of synchrony in population fluctuations relative to the

simpler model with density regulation at each location determined only by the local point density, and

may even generate negative spatial autocorrelations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In population dynamics spatial synchrony is measured by pa-

rameters expressing how correlations in population size or their

temporal fluctuations changes with distance between sites. Such

correlations are of great interest because they in general affect the

dynamics and in particular extinction risks [2,6,11,23,30,42]. Pop-

ulations can be synchronized by the effects of spatially correlated

environmental variables [5,28,33,42] such as weather [18], by bio-

logical interactions like predation [24,47] as well as dispersal rates

and distances [16,43]. These effects may differ considerably among

species [30,39], leading to large interspecific differences in the spa-

tial scale of population synchrony [43].

Spatial population dynamics was first studied by metapopu-

lation models introduced by Levins [31,32], and then extended

especially by Hanski and collaborators [21,22]. Later models in
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continuous time and space have proved useful in analyzing how

environmental noise, density regulation and dispersal rates in gen-

eral influence population synchrony [10,12,27,29,30] that in turn

may have considerable effects on extinction processes [11].

In the absence of migration, linear spatial population models

(or log population size models) in discrete or continuous time have

the simple property, known as the Moran effect [36], that the

spatial autocorrelation of population size (or log population size)

equals the spatial autocorrelation in the noise, provided that the

strength of density regulation is constant in space [12]. However,

spatial dynamic models with migration has shown that dispersal

may have a substantial additional effect on the scale [10,29]. In

particular, under weak local density regulation even small migra-

tion over short distances may lead to a spatial scale of population

synchrony that is much larger than the scale of the environmental

noise. Lande et al. [29] expressed this by a simple result, using a

linearized model. Defining the spatial scale of a function of spatial

distance as the standard deviation of the distribution obtained by

scaling the function, they showed that the squared spatial scale of

population density was l2
0

+ ml2
g /γ , where l0 and lg are the scales

of environmental noise and dispersal distance, respectively, m is
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the dispersal rate, and γ the strength of local density regulation. A

similar formula was given by Engen [10] for log density with larger

population fluctuations but smooth migration modeled as spatial

diffusion.

In addition to using linear models as approximation to more

complex dynamics, the result of Lande et al. [29] is based on

two other simplifying assumptions. First, there is no demographic

stochasticity acting independently on the survival and reproduc-

tion of each individual, only spatially correlated environmental

stochastisity affecting all individuals sufficiently close to one an-

other in the same way. This is realistic only for large densities, or

very large spatial scale of environmental effects. Second, the mod-

els are based on the assumption of strictly local density regulation,

that is, the temporal changes in density at a given location is only

affected by the density at that particular point, with no direct ef-

fect from the density at nearby locations.

Here, we consider the linear model of Lande et al. [29], gener-

alized to include demographic stochasticity acting locally. Further-

more, the density regulation at a given point in space is assumed

to act through a given weighted average of densities in the neigh-

borhood of the point, defining a more realistic competition for re-

sources in space. These two additional components still lead to

rather transparent analytical results and are shown to create sub-

stantial effects on the spatial autocorrelation of population density.

The most common approach to studying population dynamics

in space is to use so-called individual based models, simulating

the dynamics based on the performance of each individual in rela-

tion to reproduction, survival and dispersal [46]. Such an approach

has the advantage that one can study very complex forms of spa-

tial structure and non-linear dynamics. The drawback, on the other

hand, is that one cannot obtain general analytical results but only

investigate the performance of the system for a limited choice of

parameter values compared to all realistic combinations. Another

approach is to start with small cells in space and define birth and

death processes with possible increase or decrease of a single indi-

vidual at each cell during an infinitesimal time step, and allow for

smooth dispersal of individuals by spatial diffusion [7,35,38]. His-

torically, this was also the approach first used to describe stochas-

tic dynamics of populations with no spatial structure [3], but dur-

ing the 1970s one became aware of the practical limitations of

these models due to large environmental effects affecting all in-

dividuals in the same or similar way [17,25,26,34,45,54]. For large

populations demographic noise, which by definition is independent

among individuals, has practically no effect compared to environ-

mental noise [30]. Starting with pure demographic noise and gen-

eralizing by including temporal environmental variation in param-

eters has so far not given any transparent analytical results. At the

other extreme, the vast literature on time series analysis on log

population sizes using constant variance in the noise [53] only in-

cludes the environmental component with no demographic noise

and may therefore be inadequate for small population sizes.

Here we follow the approach of Lande et al. [29] using the con-

cept of population density with no reference to positioning of each

individual in the population. The underlying basic idea is that in-

dividuals move around in their habitat and thereby contribute to

a continuous spatial density function expressing the mean number

of individuals in areas relative to these stochastic movements [13].

Demographic stochasticity is generated by within year variation

among individuals in survival and reproduction [30] and thereby

operates directly on the point process but indirectly also on the

density function. Each death or reproduction, however, only af-

fects the density function over a very small area where the indi-

viduals are most likely to stay. Density regulation, on the other

hand, reflects the competition between individuals for resources

spread out over larger areas where individuals search for and col-

lect their food items. Hence, individuals with substantial difference

in mean positions may still compete with one another during for-

aging due to overlapping search areas. This may in particular be

the case in a seasonal environment, where individuals from large

areas may compete intensively during periods with limited food

supplies [15,41]. Accordingly, competition for food creates a den-

sity regulation in such a way that the density at a given point is

affected not only by the local density at that point, but also by the

densities in a surrounding area where foraging is likely to occur.

Here we do not model the spatial position of each individual but

still take the independent contributions from individuals into ac-

count by adding a demographic noise component to the density,

which is actually a spatial white noise component. This is defined

in such a way that it leads to the correct magnitude of fluctuations

in small areas in agreement with models without spatial structure

[30].

Let z denote points in the two-dimensional space and write μ(z,

t) for the population density at z at time t meaning that the mean

number of individuals in a small (infinitesimal) area dz at posi-

tion z at a given time t is μ(z, t)dz. We consider each individ-

ual to contribute to the density according to its movements in its

home range so that the integral over the entire space of the den-

sity contribution from a single individual is one. The density μ(z,

t) therefore is a mean value in the sense that the expected num-

ber of individuals in an area A during a discrete time step with

given density field μ(z, t) is ∫Aμ(z, t)dz. Our aim is to analyze how

the field μ(z, t) changes through time by births and deaths of in-

dividuals affected by density, as well as migration. Stochastic con-

tributions to the next generation will typically have demographic

components generated by independent stochastic variation in vi-

tal rates among individuals a given year, as well as environmental

components generated by a stochastic environment affecting all in-

dividuals at nearby locations in the same or a similar way. In sim-

ple models with no spatial components, the relative effect of de-

mographic and environmental variance is determined by the pop-

ulation size, the demographic and environmental variance compo-

nents of the temporal increment in a population of size N being

proportional to N and N2, respectively. This variance is written as

σ 2
d

N + σ 2
e N2 where σ 2

d
and σ 2

e are the demographic and environ-

mental variances [9]. We shall see that a similar result holds for

spatial models in which the relative effects of these components

in an area depend on the number of individuals expected to be

in that area. One interesting question is how these variance com-

ponents act together in generating the spatial autocorrelation func-

tion, in particular what their role is in determining the spatial scale

of synchrony. Here we show that the demographic variance in re-

lation to environmental variance acts in space through a spatial

demographic coefficient s = σ 2
d
/(σ 2

e N0), where N0 is a characteristic

population size defined by the mean density and the autocovariance

function for environmental noise.

2. Deterministic model

In the absence of migration and stochastic noise we assume

that the density regulation at z acts through the weighted mean∫
μ(z − u, t) f (u)du, where f(u) is a two-dimensional distribution

obeying
∫

f (u)du = 1. The continuous model for temporal change

in density then takes the form

dμ(z, t)

dt
= rμ(z, t)

{
1 − D

[∫
μ(z − u, t) f (u)du

]}
,

where D is an increasing function describing how the densities in

the neighborhood of z affects the expected growth in density and r

is the growth rate in the absence of density regulation. This formu-

lation defines an overall carrying capacity K for population density

defined by D(K) = 1. For a spatially constant population density

μ(z, t) = K the growth at any point in space is accordingly zero.
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