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a b s t r a c t 

In this paper we analyse a predator–prey model where the prey population shows group defense and 

the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig–

MacArthur predator–prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group 

defense leads to a square root dependence in the Holling type II functional for the predator–prey inter- 

action term. The system dynamics is investigated using simulations, classical existence and asymptotic 

stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and 

Hopf bifurcations which occur commonly in predator–prey systems will be found. Because of the square 

root interaction term there is non-uniqueness of the solution and a singularity where the prey population 

goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible 

prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability 

similar to what is found in predator–prey models with a strong Allee effect. For the two-dimensional 

disease-free (i.e. the purely demographic) system the region in the parameter space where bistability oc- 

curs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle 

prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destruc- 

ted. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which 

the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we 

extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator–prey 

system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation 

and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by vary- 

ing one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its de- 

struction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes 

gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after 

which a total collapse of the three-dimensional system occurs. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Recently the role of social behavior in the context of inter- 

acting populations has been introduced in predator–prey models. 

In the classical Rosenzweig–MacArthur model [19,20] both prey 

and predators have an homogeneous spatial distribution. The prey 

grows logistically in the absence of the predator and the natural 

predator mortality rate. The predator–prey interaction is described 

by a Holling type II functional response (the predation rate per 

predator which is a monotonic increasing prey-dependent hyper- 
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bolic relationship) where a handling time of the prey introduces 

feeding saturation. In [7] the predators are assumed to have a 

heterogeneous spatial distribution (for instance when they form a 

colony or school). Then the functional response depends on both 

predator and prey densities in a manner that reflects feeding in- 

terference between predators. This leads to a ratio-dependent or 

Beddington–DeAngelis type of functional response (see also [6] ). In 

[10,21] on the other hand, the prey spatial distribution is hetero- 

geneous giving group defense and the Holling type IV or Monod–

Haldane functional response is used. This expression is also only 

prey-dependent but the function is now not monotonically increas- 

ing. The predation rate per predator decreases for larger prey den- 

sities. Bate and Hilker [4] note that Holling type IV functional 

responses usually result in an upper threshold of prey density, be- 

yond which the predator cannot survive. Further, in recent work 
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[11] the predators functional response is derived starting from first 

principles. 

Here we study a different formulation with heterogeneous prey 

spatial distribution on the ground. The prey gather together in 

herds where only prey individuals that live close to the herds 

boundary on the ground are subject to hunting by predators. In 

[1,5,23,25] this feature has been taken into account in ecoepidemi- 

ological systems. These, besides ecological situations dealing with 

demographically interacting populations, consider also a transmis- 

sible disease in the system, see [16,24] for an introductory account. 

In a parallel paper [8] an ecoepidemiological model in which 

the epidemics spread among the predators was proposed. Here 

we investigate a model where the prey are affected by a disease 

that propagates by contact. With respect to earlier formulations, 

these models exhibit the feature of feeding satiation, modeled via 

a Holling type II response function such as in the Rosenzweig–

MacArthur model [20] . However, here the prey-dependent hyper- 

bolic relationship is expressed as a function of the “square root” of 

the prey size instead of the prey size itself. It differs from the herd 

behavior model presented in [1] , because it takes into account the 

feeding satiation phenomenon also explored in [8] . In the recent 

paper [4] a similar problem was studied but the predator group- 

defending prey functional response was the Holling type IV instead 

of the “square root” functional response. 

The paper is organized as follows. In Section 2 we present 

the ecoepidemic model and the outline the methodology of the 

study. The two-dimensional models, the epidemic one, with in- 

fected prey population, and the purely demographic, i.e. disease- 

free, predator–prey model, are analysed respectively in Sections 3 

and 4 . Here we extend the analysis of [8] by a phase portrait anal- 

ysis to study the total collapse of the system caused by a hetero- 

clinic connection between the two prey-only saddle equilibria. 

In Section 5 we move to the analysis of the full model where 

the prey is affected by the infectious disease, assuming that dis- 

eased individuals are left behind by the herd. We start with a clas- 

sical existence and stability analysis of all equilibria in Sections 5.1 

and 5.2 . In Section 5.3 , the numerical bifurcation analysis is carried 

out, completed for the special instance of codimension-two bifur- 

cations. In addition to the bifurcations of the classical predator–

prey models, i.e. transcritical, tangent (saddle node) and Hopf bi- 

furcations, here also the torus (Neimark–Sacker) bifurcation occurs. 

A new phenomenon is represented by the abrupt destruction of 

the quasi-periodic dynamics on a torus similar to what was found 

in [3,6] . 

In Section 6 the results of all particular cases will be compared 

with the results of the ecoepidemic model with the infected preda- 

tor population, instead of the prey, analysed in [8] and a final dis- 

cussion concludes the paper. Assuming that the carrying capacity 

is sufficiently high to support coexistence of prey and predator, due 

to the weakening of the prey population by infection, the preda- 

tor feeding on the prey population can persist for higher predators 

natural mortality rates. 

2. Modeling and analysis approach 

2.1. The model 

We consider the model presented in [23] , which we briefly il- 

lustrate again here for the convenience of the reader, to better 

emphasize the changes in that main model. The basic ecological 

model is an adapted Rosenzweig–MacArthur model first discussed 

in [19] where both prey and predators have an homogeneous spa- 

tial distribution. Mathematically, the consumption rate of the prey 

by the predator is expressed via a hyperbolic relationship. 

In our case the spatial distribution of the prey population, form- 

ing a herd and occupying a certain portion of the ground, is het- 

erogeneous. The prey individuals most subject to hunting are those 

close to the herd boundaries. The area occupied by the herd is pro- 

portional to the prey population and therefore to the size of the 

herd itself. The prey density on the herd perimeter is therefore 

proportional to the square root of the size of the herd and thus 

in the hyperbolic relationship of the standard Holling type II term, 

the prey size is here replaced by a square root of the prey size. The 

prey population grows logistically in the absence of the predator. 

In the absence of the prey, the predators die exponentially fast. 

In order to model the spread of the disease, the prey population 

is divided into two classes consisting of healthy and diseased indi- 

viduals. The latter are assumed to be too weak to reproduce and to 

compete for resources. Therefore the basic two-population demo- 

graphic predator–prey model is extended into a three-dimensional 

predator—susceptible prey—infected prey model. As in the classi- 

cal two compartmental SI-model the law of mass action is used to 

formulate the infection rate of the susceptible by infected prey, as- 

suming possible contacts among all the individuals of the herd. The 

infected prey are assumed to be too weak both to reproduce and 

to compete for resources, i.e. they do not appear in the logistic re- 

production function for the healthy prey. The infected prey are fur- 

ther assumed to drift away from the herd when become infected; 

this for instance occurs for elephants. But in the process, they are 

still able to infect other individuals in the herd. Once alone, they 

can easily be hunted by the predators. In view of the ease of these 

captures, we assume that the predators never get tired of hunting 

sick isolated prey individuals, this implying that in this case the 

hunting term is bilinear, i.e. a mass action term, as in the classical 

Lotka–Volterra model. On the other hand, as stated above, we as- 

sume that they can become satiated by hunting the healthy prey 

in the herd, observing that this hunt requires more effort than that 

one on the infected prey. Thus, mathematically, this is better mod- 

eled by a Holling type II response function. The predators’ differ- 

ent attitudes in the prey capture therefore determine the different 

choices for the functional responses among healthy and infected 

prey. 

The model where the state variables and parameters are over- 

lined in order to be able to introduce re-scaled versions later, reads 
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. (1c) 

The system consists of the equation for healthy prey R (τ ) , re- 

producing logistically and being subject to the negative effects of 

hunting as well as to the infection process. The infected prey I (τ ) 

do not reproduce so that they are absent in the logistic growth 

term in the first equation, nor do they contribute to the popula- 

tion pressure on the susceptible prey, because we assume them 

to be too weak for that. The spread of the infection is modeled 

via a bilinear term with rate parameter λ. The disease is unre- 

coverable, i.e. once entered into this class, an infected individual 

only exits it by dying at rate μ, incorporating natural plus disease- 

related effects or possibly by predation modeled with the Holling 

type I functional response with rate parameter b . Note that here 

we disregard the possible healthy prey population pressure on the 

infected prey, i.e. we do not introduce a term of the type c R I into 

the second equation, assuming that the mortality is already rep- 

resented by the linear term. Note also that the infected prey are 

assumed to be left behind by the herd, so that they are hunted on 

a one-to-one basis by the predators. Hence, they are also an “easy”
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