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a b s t r a c t 

Speciation is characterized by the development of reproductive isolating barriers between diverging 

groups. A seminal paper of a mathematical model of speciation was published by Orr (1995), extended 

by Livingstone et al. (2012) to incorporate interaction networks. Here, we further develop the model to 

take into account the possibility of different substitution rates for network nodes of different connec- 

tivity. Mathematically, this amounts to sampling nodes from an undirected graph where the inclusion 

probability for a given node depends on its degree (number of connecting edges). We establish formulas 

for the rate of speciation and identify a crucial parameter that is a measure of the deviation from simple 

random sampling. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The Bateson–Dobzhansky–Muller (BDM) model describes how 

fixation of mutations in allopatric populations could produce invi- 

ability or sterility in hybrid offspring, without the mutations lower- 

ing fitness within either population. Briefly, the BDM model starts 

with an ancestral (diploid) population of genotype aabb; in one 

population, the A allele arises and becomes fixed, while in the 

other population, B arises and is fixed. The resulting hybrid from 

the AAbb aaBB cross would have genotype AaBb, and as A and 

B have never been “tested” together, they could interact epistati- 

cally to cause a genetic incompatibility. The accumulation of such 

Bateson–Dobzhansky–Muller incompatibilities (BDMIs) can cause 

permanent isolation, and hence speciation. 

In [7] , Orr introduces a mathematical model for the rise of BD- 

MIs. In this model, two diverging lineages fix alleles at K loci be- 

tween them, and each new allele has a probability p of being in- 

compatible with an allele (derived or ancestral) from the other lin- 

eage at one of the K − 1 loci at which substitutions have occurred. 

It is demonstrated how the expected number of incompatibilities 

increases as a function of K 

2 , a phenomenon referred to as “snow- 

balling,” (see [6] ) and how the probability of speciation also de- 

pends on K through K 

2 . Here and subsequently, speciation is sim- 

ply defined as the occurrence of at least one BDMI. 
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In [5] , we elaborated upon Orr’s model by recognizing that 

most nodes in a real biological network are connected to only a 

small number of other nodes, while very few nodes act as central 

hubs with a large number of interactions (see [2] ). We modeled an 

interaction network as an undirected graph where nodes are loci 

and edges are existing interactions, each edge leading to a BDMI 

with probability p . The crucial parameters of the network turn out 

to be the number of nodes, N , and the number of edges, N E , which 

are used to define the density α = N E / 
(

N 
2 

)
(Orr’s model would thus 

correspond to a complete graph with N E = 

(
N 
2 

)
and α = 1 ). 

The rise of K substitutions is modeled by randomly sampling K 

nodes from the network, resulting in a subgraph where each edge 

(existing interaction) may lead to a BDMI, with probability p . Thus, 

the more edges, the more likely a BDMI and also note that the 

number of edges is a random variable with range { 0 , 1 , . . . (K 
2 

)} , 
whereas in Orr’s model we always get 

(
K 
2 

)
edges. It is demon- 

strated that, to a first order of approximation, the formula for the 

probability of speciation contains α as a parameter but is other- 

wise similar to Orr’s. Effectively, the parameter p (probability of a 

single BDMI) is replaced by the product αp . 

The sampling in [5] is done randomly, that is, every node is 

equally likely to be included in the sample of size K . Biologically, 

this translates into all alleles being equally likely to become sub- 

stituted; however, as is evident from the literature on the subject, 

this assumption is questionable. For example, in [3] , it is observed 

that the connectivity of well-conserved proteins in the protein–

protein interaction (PPI) network for the yeast S. cerevisiae is 
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negatively correlated with their rate of evolution, and [4] reports 

similar findings for yeast, and also for two other species. Indeed, 

in [4] it is pointed out that there is a “consistent reduction in evo- 

lutionary rate for essential proteins in all three species: essential 

genes in the protein interaction network evolved at 70% the rate 

of nonessential genes (yeast: 70.5%; worm: 71.4%; fly: 70.1%)”. To 

allow for this possibility, we now extend our model from random 

sampling to sampling where a node has an inclusion probability 

that may depend on its degree (number of interactions). Al- 

though the biological motivation is the aforementioned negative 

correlation, our model is not restricted to such assumptions but 

allows for any kind of dependence of sampling probabilities on 

connectivity. 

2. Mathematical model 

We consider a network with N nodes such that there are N i 

nodes of degree i for i = 1 , 2 , . . . , where we note that the theoret- 

ical upper limit for i is N − 1 . We define the degree distribution as 

the sequence (q (1) , q (2) , . . . ) where 

q (i ) = 

N i 

N 

(1) 

so that the mean degree is 

μ = 

∑ 

i 

iq (i ) (2) 

which can be thought of as the expected degree of a randomly 

chosen node. Let N E denote the number of edges in the network 

and define the density of the network as 

α = 

N E (
N 
2 

) (3) 

As every edge connects to 2 nodes, we get the relation 

2 N E = 

∑ 

i 

iN i (4) 

and combining this with (1) and (2) yields 

2 N E = Nμ (5) 

and as 
(

N 
2 

)
≈ N 

2 / 2 , we also note that 

μ ≈ Nα (6) 

relations we will make use of later. 

Now sample K nodes in a way such that a given node of degree 

i has a probability f ( i ) of being chosen when picking a single node. 

The case of random sampling, as in [5] , corresponds to a uniform 

distribution: f (i ) = 1 /N for all i . Let D be the degree of a node cho- 

sen according to the f ( i ) and note that, as there are Nq ( i ) nodes of 

degree i , we get 

P (D = i ) = Nq (i ) f (i ) (7) 

and hence expected value 

E[ D ] = 

∑ 

i 

iNq (i ) f (i ) (8) 

As this is the mean when choosing according to the f ( i ), and μ
is the mean when choosing randomly, we define the ratio 

r = 

E[ D ] 

μ
(9) 

which can be thought of as a measure of deviation from random 

sampling. Note that random sampling gives E[ D ] = μ so that r = 1 . 

If nodes of higher degrees are less likely to be chosen (less prone 

to substitution), we typically get r < 1. 

3. Results 

Let X be the number of edges that we get when sampling K 

nodes according to the f ( i ). The key observation used to compute 

both speciation probability and expected time until speciation is 

the following proposition, proved in the Appendix : 

Proposition 1. 

E[ X ] ≈ K 

2 

2 

r 2 α

Note: With random sampling, as in [5] , the result is that 

E[ X ] = 

(
K 

2 

)
α (10) 

≈ K 

2 

2 

α (11) 

which is the case when r = 1 . In [7] , both r and α equal 1 and 

X ≡
(

K 
2 

)
. 

It is interesting to notice that, at least to a first-order approx- 

imation, the dependence of E [ X ] on the network is light, in the 

sense that the network itself enters only via the density α and the 

sampling only via the parameter r . Thus, there are many different 

network topologies and many different sampling schemes (substi- 

tution mechanisms) that can lead to the same speciation rate. 

Other than the usual snowballing – quadratic rather than linear 

dependence of E [ X ] on K – we now also notice a quadratic depen- 

dence on r , which if r < 1 amounts to a “snowballing in reverse,”

indicating that the speciation rate might be sensitive already to 

small reductions in r . 

A formula for the probability of speciation (at least one incom- 

patibility) after K substitutions now follows from Proposition 1 : 

Proposition 2. Let p denote the probability of an incompatibility and 

let S denote the event of speciation after K substitutions. Then 

P (S) ≈ 1 − (1 − p) K 
2 r 2 α/ 2 

To investigate the effect of the sampling scheme on the specia- 

tion rate, we compare P ( S ) for a few different shapes of the f ( i ). In 

general, let 

f (i ) = cr(i ) (12) 

where r is a function determining the general shape of f and c is a 

normalizing constant. By (7) 

c = 

1 

N 

∑ 

i 

q (i ) r(i ) 
(13) 

which by (8) gives the expected degree as 

E[ D ] = 

∑ 

i 

iq (i ) r(i ) 

∑ 

i 

q (i ) r(i ) 
(14) 

whence we can compute the speciation probability by (9) and 

Proposition 2 . 

As an example, we will again use the PPI network for S. cere- 

visiae and investigate 3 general shapes of a decreasing f : linear, 

polynomial, and exponential. As the yeast network appears to be 

well described by a power law (see [9] ), we take 

q (i ) = ai −b , i = 1 , . . . , N − 1 (15) 

where the parameter b gives the exact shape and a is a normaliz- 

ing constant. Different values of b in the range 1.5–2.5 have been 

reported (see [1] ) and as we are mainly concerned with differences 
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