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a b s t r a c t 

A simplified model of the crustacean gastric mill network is considered. Rhythmic activity in this network 

has largely been attributed to half center oscillations driven by mutual inhibition. We use mathematical 

modeling and dynamical systems theory to show that rhythmic oscillations in this network may also 

depend on, or even arise from, a voltage-dependent electrical coupling between one of the cells in the 

half-center network and a projection neuron that lies outside of the network. This finding uncovers a 

potentially new mechanism for the generation of oscillations in neuronal networks. 

Published by Elsevier Inc. 

1. Introduction 

Networks of neurons display a variety of oscillatory behaviors. 

For example, oscillations in the levels of calcium concentrations, 

gene expressions and in the membrane voltage across cell mem- 

branes are all commonly found in neuronal systems. Often these 

oscillations are rhythmic in that they display a consistent pattern 

at a prescribed frequency [1] . Central pattern generating (CPG) 

networks provide several examples that exhibit rhythmic activity. 

CPGs refer to networks of neurons in the central nervous system 

that produce patterned (usually oscillatory) activity in the absence 

of patterned sensory input. These networks play a critical role in 

generating a diverse array of motor functions such as digestion, lo- 

comotion, respiration and regulation of heartbeat in invertebrates 

[2] . A central question in the study of neural oscillations is what 

are the mechanisms that underlie the generation of rhythmic ac- 

tivity and how that activity is regulated. This study will focus on 

this general question in the context of the gastric mill rhythm 

(GMR; frequency 0.1 Hz) that arises in the stomatogastric ganglion 

(STG) in the crustacean central nervous system. In particular, we 

will show the existence of a new mechanism based on voltage- 

Abbreviations: CPG, central pattern generating; GMR, gastric mill rhythm; STG, 

stomatogastric ganglion; HCO, half-center oscillator; LG, lateral gastric; INT1, in- 

terneuron 1; STNS, stomatogastric nervous system; AB, anterior burster; MCN1, 

modulatory commissural neuron 1. 
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dependent electrical coupling for generation of oscillations within 

a neuronal network. 

The gastric mill network consists of a small number of neu- 

rons in the STG that control muscles that move teeth to provide 

grinding of food (chewing) within the gastric mill stomach of crus- 

taceans [3] . In the Jonah crab, a pair of neurons, the lateral gas- 

tric ( LG ) and Interneuron 1 ( INT 1) form a half-center oscillator 

(HCO) and are primary contributors to the GMR. These neurons 

are connected by reciprocally inhibitory synapses and, during gas- 

tric mill activity, display anti-phase bursting oscillations. They also 

receive input from various parts of the stomatogastric nervous sys- 

tem (STNS). In particular, INT 1 receives rhythmic inhibition from 

the pacemaker anterior burster neuron ( AB ) of the pyloric CPG. 

Because the pyloric rhythm (frequency 1 Hz) is much faster than 

the gastric mill, the AB to INT 1 input produces pyloric timed pat- 

terns in the INT 1 bursting activity. Both LG and INT 1 receive exci- 

tatory input from the modulatory commissural neuron 1 ( MCN 1) 

with INT 1 receiving fast excitation and LG receiving slow modula- 

tory excitation. Additionally, the MCN 1 axon terminals are electri- 

cally coupled to LG in a manner that is dependent on the voltage of 

LG [5] . It is the role of this electrical coupling that is of particular 

interest to us in this paper. 

Neurons that lie within an HCO typically utilize reciprocal in- 

hibition to generate oscillations [6] . In particular, in a two cell 

HCO, when one of the cells is active, its inhibitory synapse sup- 

presses the other. At some later time, the silent cell escapes or is 

released from inhibition and the roles of the two cells switch [7] . 

In the gastric mill network, LG and INT 1 can oscillate in this man- 

ner with the ability to escape inhibition and generate oscillations, 
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but only in the presence of the excitatory input provided by MCN 1 

[5,8] . 

Although a number of modeling studies have explored the gen- 

eration of oscillations in the gastric mill network [8–11,13] , the role 

of the strong electrical coupling between the MCN 1 axon termi- 

nals and the LG neuron has not been previously explored. In this 

study, we will show that voltage-dependent electrical coupling can 

provide an alternative mechanism for the generation of oscillations 

when the inhibition based HCO mechanism is incapable of doing 

so. In particular the LG − INT 1 HCO can be rendered ineffective if 

(1) the inhibitory synapse form INT 1 to LG is inactivated, or (2) 

if the excitability property of LG is reduced. In order to fully un- 

derstand how electrical coupling affects this network, we will first 

consider a simple model to see how electrical coupling between 

LG and MCN 1 axon terminals affects the ability of oscillations to 

be created through the standard HCO inhibition based mechanism. 

We will discuss how the electrical coupling modulates the rhyth- 

mic properties of this oscillation. We will then remove the INT 1 

to LG synapse and show that rhythmic oscillations can still arise 

through the electrical coupling between LG and MCN 1 axon termi- 

nals, but only if this coupling is voltage dependent, as has been 

reported experimentally [5] . We will then demonstrate the same 

in a biophysical model based on the Morris–Lecar equations [15] . 

For both models, we derive conditions on parameters showing why 

the electrical coupling must be voltage dependent to produce os- 

cillations. 

The modeling and analysis in this paper is based on the use of 

geometric singular perturbation theory. Exploiting inherent differ- 

ences in timescales, we will derive sets of fast and slow equations 

that can be studied in the relevant phase space. For the simple 

model, this can be done on a two-dimensional phase plane and 

is the focus of Sections 3.1 –3.4. The analysis in those sections fol- 

lows the tradition of using relaxation oscillators with the individ- 

ual neurons modeled as passive elements. The relaxation oscilla- 

tions in this case arise due to the method of model reduction that 

incorporates a slow synaptic variable. In Section 3.5 , the fast–slow 

analysis allows us to project the relevant dynamics onto two dif- 

ferent phase planes to facilitate understanding of the model. 

2. Model 

2.1. Simple passive cell network model 

We describe the simple network that we shall initially consider. 

A key assumption for this model is that INT 1 and LG are mod- 

eled as passive cells with no active currents or excitable properties. 

Thus if oscillations are to be generated, they must arise as a direct 

result of network interactions. By identifying variables that evolve 

on different time scales and by making a few other assumptions, 

we can use geometric singular perturbation theory to focus on the 

analysis of a reduced two-dimensional system of equations. These 

variables correspond to the voltage of LG and to the synaptic in- 

put that LG receives from MCN1 and are shown in solid in Fig. 1 . 

The electrical coupling is also shown in solid in Fig. 1 as it can be 

defined in terms of the reduced quantities including the voltage of 

LG . Shown with dotted lines/circles are the other variables that we 

will incorporate into the solid variables and thus will not need to 

explicitly track. 

Let V L and V I denote the voltages of LG and INT 1 respectively. 

We will not model individual spikes but instead keep track of 

when a cell is above (active) or below (silent) threshold. These 

voltages will evolve on a fast time scale. Notice that AB and MCN 1 

do not receive synaptic input from any other cells in the circuit. 

Thus we do not explicitly model either but instead need only keep 

track of their synaptic and electrical output. The equations that de- 
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Fig. 1. Schematic diagram of the modeled network.Solid elements are explicitly 

represented in the reduced two-dimensional model whereas dashed elements are 

defined as functions of the explicit variables. Filled small circles indicate synaptic 

inhibition, solid box is synaptic excitation and the resistor symbol indicates electri- 

cal gap junction coupling between the MCN 1 axon terminals and LG . 

scribe the relevant voltages are: 

ε
dV L 

dt 
= − I rest,L (V L ) − I syn,I→ L (V I , V L ) 

− I syn,M→ L (V M 

, V L , s ) − I elec (V L , V M 

) (1) 

ε
dV I 

dt 
= − I rest,I (V I ) − I syn,L → I (V I , V L ) − I syn,AB → I (V I , s AB → I ) (2) 

The intrinsic current I rest,x (V x ) = g rest,x [ V − E rest,x ] where g rest, x and 

E rest, x are the passive rest conductance and reversal potentials. No- 

tice that in the absence of any other currents, the value V = E rest,x 

is a stable rest point. For LG, E rest, L < V T while for INT 1, E rest, I 

> V T for a fixed threshold V T . MCN 1 is assumed to be tonically 

active which we model by setting its voltage to a value V M 

> 

V T . The synaptic currents obey an equation of the form I syn,x → y = 

g x → y s x → y [ V y − E inh ] where x and y are the pre- and post-synaptic 

cells. The variables s AB → I , s L → I and s I → L are straight forward 

to understand and are instantaneous. The synaptic variable s AB → I 

provides the input due to AB activity and is modeled using a pe- 

riodic, half-sine function with an amplitude of 1 and period of 1 

s. This synapse takes on the value one when the sine function is 

greater than a threshold, set here to 0.5, and is zero otherwise. 

The synapses between LG and INT 1 are also instantaneous and we 

utilize the fact that these cells are always out-of-phase with one 

another. 

s AB → I (t) = Heav 

(
sin 

(
2 π(t) 

10 0 0 

)
− 0 . 5 

)
(3) 

s L → I (V L ) = 

[ 
1 + exp 

(v 1 − V L 

k 1 

)] −1 

(4) 

s I→ L (V I ) = 

[ 
1 + exp 

(v 2 − V I 

k 2 

)] −1 

(5) 

The remaining synaptic variable s requires some explanation. In the 

biological system, MCN 1 exerts a slow excitatory effect on LG that 

is modulated by pre-synaptic inhibition from LG onto the MCN 1 

to LG synapse. Thus when LG is active, this excitation is slowly re- 

moved; when LG is silent, the excitation slowly builds. This is mod- 

eled by the variable s that evolves on a slow time scale and is the 

only slow variable in our model. Equations governing this variable 

are: 

ds 

dt 
= 

{
(1 − s ) /τr V L ≤ V T 

−s/τ f V L > V T 
(6) 

In equation (1) , the synaptic current is then given by 

I syn,M→ L = g M→ L s [ V L − E exc ] . (7) 

Fig. 1 shows an electrical coupling between LG and the MCN 1 

axon terminals. The electrical current is given by 

I elec (V L , V M 

) = g elec (V L )[ V L − V M 

] . (8) 

This coupling is dependent on the voltage of LG and MCN 1 in two 

different ways. First, the strength is an increasing function of V L . 
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