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a b s t r a c t 

Mathematical modelling applies to a wide variety of application areas, and is an active area of research 

in many disciplines. It is often the case that accurate depiction of real-world phenomena require increas- 

ingly complex models. Unfortunately, this increased complexity in a model causes great difficulty when 

seeking solutions. What is more, developing a model with known parameters that produces results con- 

sistent with observed behaviors may prove to be a difficult or even impossible task. These difficulties 

have brought about an interest in inverse problems. 

In this paper we utilize a collage-based approach to solve an inverse problem for a model for the 

migration of three fish species through floodplain waters. A derivation of the mathematical model is 

presented and a generalized collage method is discussed and applied to this model to recover diffusion 

parameters. Theoretical and numerical particulars are discussed and results are presented. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Brazil is one of the world’s leading dam-building nations, with 

about 80% of its electrical energy coming from dams in the form of 

hydropower [18] . While an expansion of hydroelectricity in Brazil 

would lead to crucial economic growth, the social and environ- 

mental costs of constructing dams may far outweigh this economic 

gain. Among these environmental costs is the endangerment of 

wildlife and their habitats. While many studies have examined the 

effect of anthropogenic activity on the persistence and resilience 

of terrestrial organisms, very little research has focussed on sub- 

merged populations. 

In this paper, we develop a nonlinear model for the dispersal 

of fish populations in floodplain waters, and then use a collage- 

based approach to solve the inverse problem presented by this 

model. We begin in Section 2 with a discussion of some eco- 

logical underpinnings. In Section 3 we combine the modelling 

ideas in [2,3,5,12] to derive a model that describes the phe- 

nomenon of floodplain migration mathematically. In Section 4 we 

discuss the existence and uniqueness of a weak solution to our 

model problem. With an understanding of the forward problem, 

in Section 5 we state the inverse problem of interest and discuss 

a collage-based method for solving this problem. One practical ap- 

plication of such an inverse problem is to determine which fish 

populations may be threatened by damming (based on movement 

patterns) so that they may be relocated prior to damming and thus 
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saved. Finally in Section 6 we present results from numerical sim- 

ulations for the three different movement types studied: moderate, 

latitudinal, and longitudinal movement. Finally we discuss the re- 

sults and suggest avenues for improvement. 

2. Background 

A floodplain is a land area susceptible to being inundated by 

flood waters from any source [19] . Fig. 1 depicts the morphology 

of a general floodplain. Flooding of these land areas typically orig- 

inates from one of three sources: overspill from the river channel, 

local rainfall, and/or tidal action. A number of factors contribute to 

fish choosing to populate these floodplains. The chemical balance 

of the water can make floodplains more or less desirable habitat 

for different species of fish. Chemical cues include the ionic com- 

position, pH level, temperature of the water and composition of 

the soil. A well-balanced chemical make-up promotes the growth 

and sustenance of vegetation which is necessary for the livelihood 

of fish and other organisms. The quantity and type of vegetation 

that can grow in floodplains is strongly influenced by the depth 

of the water. Fish and other organisms may also choose to inhabit 

floodplains for mating and spawning, or to avoid large prey that 

are limited to larger bodies of water. 

Fish and other organisms typically populate floodplain waters 

during wet seasons, perhaps travelling between the floodplain and 

the river to seek out food, escape predators, or spawn. The dan- 

ger to the population occurs during dry seasons when water lev- 

els fall, sometimes stranding populations in shallow waters where 

they eventually deplete their resources and perish. In the case of 
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Fig. 1. Diagram of the morphology of a general floodplain environment [20] . 

dams, the natural flow of water is interrupted, often causing inad- 

equate replenishment of the microorganisms and bacteria needed 

for vegetation growth. The absence of this natural flow of water 

may also prevent many fish from moving up stream to their natu- 

ral breeding grounds, causing failure of breeding cycles or blockage 

of migration paths. By gaining a better understanding of the migra- 

tory patterns of different fish and other organisms, proper precau- 

tions may be taken to sustain these populations. 

Various studies of migratory patterns (see for instance [14,17] ) 

of fish identify three main behavioral patterns: 

(i) those that exhibit moderate migration, causing them to exist 

in a small radius. 
• Fish in this species undertake only moderate movements 

within the river (mainly for dispersal to dry season habi- 

tats), but spawn in the floodplain. 

(ii) those that migrate laterally seeking habitats along river bor- 

ders toward the fringes of the main channel. 
• These species are largely confined to the floodplain dur- 

ing wet seasons and settle into residual pools and la- 

goons in dry seasons. Species in this group are often re- 

ferred to as ‘blackfish’. 

(iii) those that migrate cyclically and longitudinally, for purposes 

of procreation and to search for less adverse survival condi- 

tions. 
• Fish in this species migrate upstream to the river dur- 

ing the dry season where some spawn. Adults having 

spawned upstream then return to the downstream flood- 

plain for the wet season, their young following later. 

Species in this group are often referred to as ‘whitefish’. 

These patterns are depicted in Fig. 2 . 

With an understanding of the environment and migratory pat- 

terns of fish we turn our attention to a mathematical model for 

the migration and dispersal of fish through floodplains and rivers. 

3. Mathematical formulation 

We make use of the derivation of reaction-diffusion models 

found in [16] , making appropriate adjustments for the current 

model. Let ∂� be the boundary enclosing the two-dimensional do- 

main �. Following the laws of conservation, we require that the 

rate of change of the amount of material in � is equal to the rate 

of flow of material across ∂� into �, plus the material created in 

Fig. 2. Migratory patterns of fish populations being studied. 

�. Thus 

∂ 

∂t 

∫ 
�

u ( x , t) d x = −
∫ 
∂�

J · ds + 

∫ 
�

q (u, x , t) d x , (1) 

where u ( x , t ) is the concentration of the fish species of interest, J 

is the flux of material, and q ( u , x , t ) is a net source of material (that 

is, q > 0 is an overall source and q < 0 is an overall sink). Applying 

the divergence theorem to the surface integral and assuming that 

u ( x , t ) is continuous in x , (1) becomes 

∫ 
�

[
∂u 

∂t 
+ ∇ · J − q (u, x , t) 

]
d x = 0 . (2) 

Since the domain � is arbitrary, the integrand must be zero and 

so the conservation equation for u is 

∂u 

∂t 
+ ∇ · J = q (u, x , t) . (3) 

This equation holds for a general flux transport J , whether by dif- 

fusion or some other process. For this model we use a classical 

diffusion process, defining J as 

J = −κ∇u, 

where κ is the diagonal matrix of positive diffusion coefficients (as 

in [13] ). The minus sign indicates that diffusion transports mat- 

ter from a high concentration to a low concentration. Thus (3) be- 

comes 

∂u 

∂t 
− ∇ · (κ∇u ) = q (u, x , t) . (4) 

Remark. The entries in the matrix κ can be constant, or they may 

depend on x and/or t . 

The source term q will allow us to incorporate population de- 

cline, migratory effects, and population growth. While it was orig- 

inally hypothesized that a Malthusian (exponential) growth model 

was most appropriate, one recognizes the fault in assuming that 

populations are able to grow at an exponential rate with no bound. 

Instead, we adopt a Verhulst (logistic) growth function as in [3] 

a ( x ) u − γ ( x ) u 

2 − σ ( x ) u, 
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