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a b s t r a c t 

The combined antiretroviral therapy with interleukin (IL)-2 treatment may not be enough to preclude 

exceptionally high growth of HIV virus nor rebuilt the HIV-specific CD4 or CD8 T-cell proliferative im- 

mune response for management of HIV infected patients. Whether extra inclusion of immune therapy 

can induce the HIV-specific immune response and control HIV replication remains challenging. Here a 

piecewise virus-immune model with two thresholds is proposed to represent the HIV-1 RNA and effector 

cell-guided therapy strategies. We first analyze the dynamics of the virus-immune system with effector 

cell-guided immune therapy only and prove that there exists a critical level of the intensity of immune 

therapy determining whether the HIV-1 RAN virus loads can be controlled below a relative low level. 

Our analysis of the global dynamics of the proposed model shows that the pseudo-equilibrium can be 

globally stable or locally bistable with order 1 periodic solution or bistable with the virus-free periodic 

solution under various appropriate conditions. This indicates that HIV viral loads can either be eradicated 

or stabilize at a previously given level or go to infinity (corresponding to the effector cells oscillating), de- 

pending on the threshold levels and the initial HIV virus loads and effector cell counts. Comparing with 

the single threshold therapy strategy we obtain that with two thresholds therapy strategies either virus 

can be eradicated or the controllable region, where HIV viral loads can be maintained below a certain 

value, can be enlarged. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Lifelong highly active antiretroviral therapy (HAART) continues 

to be associated with many problems such as adherence difficulties 

and evolution of drug resistance [1–4] . Structured therapy inter- 

ruptions (STIs) have been suggested as being capable of achieving 

sustained specific immunity for early therapy in HIV infection. As 

an alternative strategy, STI is a good choice for some chronically 

infected individuals who may need to take drugs throughout their 

lives, and it is beneficial for the patients’ immune reconstruction 

during the period when they are not taking the drugs [5] . 

Recently, to compare STI strategies with the continuous an- 

tiretroviral therapy, several clinical studies have been done with 

conflicting results [5–12] . In particular, Ruiz et al. [12] designed an 

experiment to evaluate the safety of CD4 cell counts and plasma 

HIV-1 RNA-guided structured treatment interruptions (STIs) aiming 

to maintain CD4 T cell counts higher than 350 cells/ μl and plasma 

HIV-1 RNA less than 10 0,0 0 0 copies/ μl . Although many mathe- 

matical models have been formulated to model continuous ther- 
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apy [13–15] , few attempts have been made to model structured 

treatment interruptions. In 2012, Tang et al. [16] proposed a piece- 

wise system to describe the CD4 cell-guided STIs, to quantitatively 

explore STI strategies and to investigate the virus dynamics un- 

der these strategies. This system has offered explanations for some 

controversial conclusions from different clinical studies. In 2015, 

by considering combined antiretroviral therapy with interleukin 

(IL)-2 treatment, we proposed a piecewise virus-immune dynamic 

model with HIV-1 RNA-guided therapy [17] . This model is given as 

follows: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 

}
x < V s , 

x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y, 

}
x > V s , 

(1) 

where x and y represent the HIV virus loads and the density of ef- 

fector cells, respectively. V s is the critical value of HIV virus loads 

determining whether the therapy is carried out or not. Here ε1 

represents the rate of elimination of HIV virus due to antiretro- 

viral therapy and ε2 denotes the growth rate of the effector cells 

due to interleukin (IL)-2 treatment. r denotes the growth rate of 

HIV virus which incorporates both multiplication and death of HIV 
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virus, δ is the death rate of the effector cells, p denotes the rate of 

binding of the effector cells to the HIV viruses. When interacting 

with the HIV virus, the effector cells usually have a limited ability 

to repeatedly kill the virus because the virus can also inhibit the 

activity of immune cells. Here q represents the rate of inactivation 

of the effector cells. cx/ (1 + ωx ) denotes the rate at which effector 

cells accumulate due to the immune response. 

In the paper [17] , we concluded that proper combinations of 

threshold and initial HIV virus loads and effector cell counts can 

successfully preclude exceptionally high growth of HIV virus and, 

in particular, maximize the controllable region. However, what- 

ever the threshold is, depending on the initial conditions of pa- 

tients’ HIV virus can not be eradicated but even increase to 

infinity, which means that the combined antiretroviral therapy 

with interleukin (IL)-2 treatment may not be enough to rebuild 

the HIV-specific CD4 or CD8 T-cell proliferative immune response 

for management of HIV infected patients. In [18] , the authors de- 

veloped a clinic experiment studying combined antiretroviral ther- 

apy and interleukin (IL)-2 treatment with immune therapy. The 

patients were divided into four groups, in which the group C 

simultaneously received antiretroviral therapy, interleukin (IL)-2 

treatment and immune therapy with HIV vaccine was injected 

once every 3 months. They showed that interleukin (IL)-2 treat- 

ment and immune therapy can induce the HIV-specific immune 

response. How the impulsive immune therapy affects the dynam- 

ics of virus-immune system with HIV-1 RNA-guided therapy and 

whether the inclusion of impulsive immune therapy can maintain 

the virus below a certain level, remain unclear. Addressing these 

issues through a mathematical modeling framework falls within 

the scope of this study. 

More precisely, the purpose of this study is to propose a math- 

ematical model to describe the combined antiretroviral therapy 

and interleukin (IL)-2 treatment with immune therapy. We address 

such challenging questions as whether the comprehensive therapy 

under the HIV-1 RNA and effector cell-guided structured treatment 

can successfully inhibit replication of HIV virus and rebuild the 

HIV-specific CD4 or CD8 T-cell proliferative immune response, and 

whether the therapy can control HIV-1 RNA below a certain level 

and maintain the density of effector cells above a certain level. The 

rest parts of this paper is organized as follows. In Section 2 , we for- 

mulate a piecewise virus-immune model with two thresholds and 

introduce the relative definitions. The dynamics of the proposed 

model with either only the effector cell or the HIV-1 RNA-guided 

therapy is discussed in Section 3 . Then, in Section 4 , we investigate 

the global dynamics of the proposed model. Finally, we conclude 

the paper with some remarks. 

2. Model formulation and preliminaries 

In this paper, we formulate the model that incorporate both the 

antiretroviral therapy and interleukin (IL)-2 treatment under the 

assumption that whenever the virus load exceeds the critical level 

(i.e. V s ), antiretroviral drugs are applied to inhibit the growth of the 

virus, and simultaneously interleukin (IL)-2 treatment is used [17] . 

The immune therapy mainly aims at rebuilding the HIV-special 

T cell immune response and guaranteeing the density of effector 

cells is enough to control the growth of HIV virus. Thus, there can 

be a critical value of the density of effector cells, denoted by T s , 

determining whether the immune therapy is carried out. In partic- 

ular, the immune therapy isn’t carried out when the density of the 

effector cells is above the level T s and one dose of HIV vaccine is 

injected immediately once the density of the effector cells declines 

to the level T s . Let ρ represent the intensity of the immune ther- 

apy every time with ρ ≥ 1. Therefore, based on model (1) , we have 

proposed the following formulation: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ′ = rx − pxy, 
y ′ = 

cxy 
1+ ωx 

− qxy − δy, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s , 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

x < V s , 

x ′ = rx − pxy − ε1 x, 

y ′ = 

cxy 
1+ ωx 

− qxy − δy + ε2 y, 

}
y > T s , 

x (t + ) = x (t) , 
y (t + ) = ρy (t) , 

}
y = T s , 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

x > V s . 

(2) 

Before going further discussing the dynamics of system (2) , we 

now introduce some technical definitions. 

Let R 2 + = { X = (x, y ) | x ≥ 0 , y ≥ 0 } . A generic planar Filippov sys- 

tem is defined as follows [19–26] : 

˙ X = 

{
F D 1 (X ) , X ∈ D 1 , 

F D 2 (X ) , X ∈ D 2 , 
(3) 

where D 1 = { X ∈ R 2 + | H(X ) < 0 } and D 2 = { X ∈ R 2 + | H(X ) > 0 } with 

H ( X ) as a smooth scale function. 

Definition 1. A point X 

∗ is called a regular equilibrium of system 

(3) if F D 1 (X ∗) = 0 , H ( X 

∗) < 0 or F D 2 (X ∗) = 0 , H ( X 

∗) > 0 while it is 

called a virtual equilibrium of system (3) if F D 1 (X ∗) = 0 , H ( X 

∗) > 0 

or F D 2 (X ∗) = 0 , H ( X 

∗) < 0. 

Definition 2. A point X 

∗ is called a pseudo-equilibrium if it is an 

equilibrium of the sliding mode of system (3) , i.e. λF D 1 (X ∗) + (1 −
λ) F D 2 (X ∗) = 0 , H(X ∗) = 0 with 0 < λ < 1 and 

λ = 

〈 H X (X 

∗) , F D 2 (X 

∗) 〉 
〈 H X (X 

∗) , F D 2 (X 

∗) − F D 1 (X 

∗) 〉 . 
A generalized planar impulsive semi-dynamic system can be 

defined as follows [27–33] : {
dx 
dt 

= P (x, y ) , dy 
dt 

= Q(x, y ) , i f φ(x, y ) � = 0 , 

	 x = a (x, y ) , 	 y = b(x, y ) , i f φ(x, y ) = 0 , 
(4) 

where (x, y ) ∈ R 2 + , 	 x = x + − x and 	 y = y + − y . P, Q, a, b are con- 

tinuous functions from R 2 + into R + . The impulsive function I : R 2 + → 

R 2 + is defined as follows: 

I(x, y ) = (I 1 (x, y ) , I 2 (x, y )) = (x + a (x, y ) , y + b(x, y )) , 

and Z + = (x + , y + ) is called an impulsive point of Z = (x, y ) . 

Let (R 2 + , π) be a planar semi-dynamic system. For any Z ∈ R 2 + , 
the positive orbit of Z is given by C + (z) = { π(Z, t) | t ∈ R + } which is 

denoted by π+ (Z) . And we define F (Z, t) = { Z ′ | π(Z ′ , t) = Z} for t ≥
0 and Z ∈ R 2 + . 

Definition 3. A planar impulsive semi-dynamic system 

(R 2 + , π ; M, I) consists of a continuous semi-dynamic system 

(R 2 + , π) together with a nonempty closed subset M of R 2 + and a 

continuous function I : M → R 2 + such that for every Z ∈ M , there 

exists a εZ > 0 such that 

F (Z, (0 , εZ )) ∩ M = ∅ and π(Z, (0 , εZ )) ∩ M = ∅ . 
Definition 4. A trajectory π+ (Z) of (R 2 + , π ; M, I) is said to be order 

k periodic if there exist nonnegative integers m and k such that k 

is the smallest integer for which I m (Z) = I m + k (Z) with Z ∈ M . 

Definition 5. The Lambert W function [34] is defined to be a mul- 

tivalued inverse of the function z 
→ ze z satisfying 

LambertW (z) exp ( LambertW (z)) = z. 

And we denote it as W for simplicity. Note that the function 

z exp ( z ) has the positive derivative (z + 1) exp (z) when z > −1 . 

Define the inverse function of z exp ( z ) restricted on the interval 
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