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a b s t r a c t 

In this paper, we derive and analyze a compartmental model for the control of arboviral diseases which 

takes into account an imperfect vaccine combined with individual protection and some vector control 

strategies already studied in the literature. After the formulation of the model, a qualitative study based 

on stability analysis and bifurcation theory reveals that the phenomenon of backward bifurcation may 

occur. The stable disease-free equilibrium of the model coexists with a stable endemic equilibrium when 

the reproduction number, R 0 , is less than unity. Using Lyapunov function theory, we prove that the trivial 

equilibrium is globally asymptotically stable. When the disease–induced death is not considered, or/and, 

when the standard incidence is replaced by the mass action incidence, the backward bifurcation does not 

occur. Under a certain condition, we establish the global asymptotic stability of the disease–free equilib- 

rium of the principal model. Through sensitivity analysis, we determine the relative importance of model 

parameters for disease transmission. Numerical simulations show that the combination of several control 

mechanisms would significantly reduce the spread of the disease, if we maintain the level of each control 

high, and this, over a long period. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Arboviral diseases are affections transmitted by hematophagous 

arthropods. There are currently 534 viruses registered in the In- 

ternational Catalog of Arboviruses and 25% of them have caused 

documented illness in human populations [1–3] . Examples of those 

kinds of diseases are Dengue, Yellow fever, Saint Louis fever, En- 

cephalitis, West Nile fever and Chikungunya. A wide range of ar- 

boviral diseases are transmitted by mosquito bites and consti- 

tute a public health emergency of international concern. Accord- 

ing to World Health Organisation (WHO), Dengue, caused by any 

of four closely-related virus serotypes (DEN-1-4) of the genus Fla- 

vivirus, causes 50–100 million infections worldwide every year, 

∗ Corresponding author at: UIT, Laboratoire d’Analyse, Simulation et Essai, 

The University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon. Tel.: +237 

671280983/+237 694523111. 

E-mail addresses: abboubakarhamadjam@yahoo.fr , hamadjam.abboubakar@univ- 

ndere.cm (H. Abboubakar), jckamgang@gmail.com (J. Claude Kamgang),

tieudjo@yahoo.com (D. Tieudjo). 

and the majority of patients worldwide are children aged 9 to 16 

years [4–6] . The dynamics of arboviral diseases like Dengue or 

Chikungunya are influenced by many factors such as human and 

mosquito behaviors. The virus itself (multiple serotypes of dengue 

virus [5,6] , and multiple strains of chikungunya virus [7,8] ), as well 

as the environment directly or indirectly affects all the present 

mechanisms of control [9,10] . 

For all mentioned diseases, only yellow fever has a licensed vac- 

cine. Nonetheless, considerable effort s are made to obtain the vac- 

cines for other diseases. In the case of Dengue for example, the sci- 

entists of French laboratory SANOFI have conducted different tries 

in Latin America and Asia. Thus, a tetravalent vaccine could be 

quickly set up in the coming months. The tries in Latin America 

have shown that vaccine efficacy was 64.7%. Serotype–specific vac- 

cine efficacy was 50.3% for serotype 1, 42.3% for serotype 2, 74.0% 

for serotype 3, and 77.7% for serotype 4 [11] . The tries in Asia have 

shown that efficacy was 30.2%, and differed by serotype [12] . In 

any case, it is clear that this vaccine will be imperfect. 

Host-vector models for arboviral diseases transmission were 

proposed in [13–30] with the focus on the construction of the 
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basic reproductive ratio and related stability analysis of the disease 

free and endemic equilibria. Some of these works in the litera- 

ture focus on modeling the spread of arboviral diseases and its 

control using some mechanism of control like imperfect vaccines 

[23,24,30] and other control tools like individual protection and 

vector control strategies [13,14,19,25,27,28] . 

In [19] , Dumont and Chiroleu proposed a compartmental model 

to study the impact of vector control methods used to contain 

or stop the epidemic of Chikungunya of 2006 in Réunion island. 

Moulay et al. [27] studied an optimal control based on protection 

and vector control strategies to fight against Chikungunya. In [24] , 

Rodrigues et al. simulate an hypothetical vaccine as an extra pro- 

tection to the human population against epidemics of Dengue, us- 

ing the optimal control theory. In those models [19,24,27] , 

(i) the population is constant (no population migration), 

(ii) the disease-induced death in humans is not considered, 

(iii) the complete stage progression of development of vectors is 

not considered, 

(iv) none of the above mentioned models takes into account the 

combination of the mechanisms of control already studied in 

the literature, such as vaccination, individual protection and 

vector control strategies (destruction of breeding site, eggs 

and larvae reduction). 

The aim of this work is to propose and study a arboviral dis- 

ease control model which takes into account human immigration, 

disease–induced mortality in human communities, the complete 

stage structured model for vectors and a combination of human 

vaccination, individual protection and vector control strategies to 

fight against the spread of these kind of diseases. 

We start with the formulation of a constant control model, 

which is an extension of the previous model developed in [30] . We 

include the complete stage progression of development of vectors, 

the waning vaccine, and four others controls (individual protection, 

the use of adulticides, destruction of breeding site, and reduction 

of eggs and larvae through chemical interventions). We compute 

the net reproductive number N , as well as the basic reproduction 

number, R 0 , and investigate the existence and stability of equi- 

libria. We prove that the trivial equilibrium is globally asymptot- 

ically stable whenever N < 1 . When N > 1 and R 0 < 1 , we prove 

that the system exhibit the backward bifurcation phenomenon. The 

implication of this occurrence is that the classical epidemiologi- 

cal requirement for effective eradication of the disease, R 0 < 1 , is 

no longer sufficient, even though necessary. However, considering 

two situations: the model without vaccination and the model with 

mass incidence rates, we prove that the disease–induced death 

and the standard incidence functions, respectively, are the main 

causes of the occurrence of backward bifurcation. We find that 

the disease–free equilibrium is globally asymptotically stable un- 

der certain threshold condition. Through local and global sensitiv- 

ity analysis, we determine the relative importance parameters of 

the model on the disease transmission. By using the pulse control 

technique (the control is not continuous in time order is effective 

only one day every T days [19] ) in numerical simulations, we eval- 

uate the impact of different control combinations on the decrease 

of the spread of these diseases. 

The paper is organized as follows. In Section 2 we present the 

transmission model and in Section 3 we carry out some analysis 

by determining important thresholds such as the net reproductive 

number N and the basic reproduction number R 0 , and different 

equilibria of the model. We then demonstrate the stability of equi- 

libria and carry out bifurcation analysis. In Section 4 , both local 

and global sensitivity analysis are used to assess the important pa- 

rameters in the spread of the diseases. Section 5 is devoted to nu- 

merical simulations. A conclusion rounds up the paper. 

2. The formulation of the model 

The model we propose here is an extension of the previous 

model studied in [30] , and is based on the modeling approach 

given in [19–23,27,28] . It is assumed that the human and vec- 

tor populations are divided into compartments described by time–

dependent state variables. The compartments in which the popu- 

lations are divided are the following ones: 

–For humans, we consider susceptible (denoted by S h ), vacci- 

nated ( V h ), exposed ( E h ), infectious ( I h ) and resistant or immune 

( R h ). So that, N h = S h + V h + E h + I h + R h . Following Garba et al. 

[23] and Rodrigues et al. [24] , we assume that the immunity, ob- 

tained by the vaccination process, is temporary. So, we denote by 

ω, the waning rate of vaccine. The recruitment in human popu- 

lation is at the constant rate �h , and newly recruited individuals 

enter the susceptible compartment S h . Only naive humans to the 

disease are taken into account in the recruitment. Each individual 

human compartment goes out from the dynamics at natural mor- 

tality rates μh . The human susceptible population is decreased fol- 

lowing infection, which can be acquired via effective contact with 

an exposed or infectious vector at a rate 

λh = 

aβh v (ηv E v + I v ) 

N h 

[23] , 

where a is the biting rate per susceptible vector, βhv is the trans- 

mission probability from an infected vector ( E v or I v ) to a sus- 

ceptible human ( S h ). The expression of λh is obtained as follows: 

the probability that a vector chooses a particular human or other 

source of blood to bite can be assumed as 1/ N h . Thus, a human 

receives in average aN v / N h bites per unit of times. Then, the infec- 

tion rate per susceptible human is given by aβh v (N v /N h )((ηv E v + 

I v ) /N v ) . In expression of λh , the modification parameter 0 < ηv < 1 

accounts for the assumed reduction in transmissibility of exposed 

mosquitoes relative to infectious mosquitoes [23,30] (see the refer- 

ences therein for the specific sources). Latent humans ( E h ) become 

infectious ( I h ) at rate γ h . Infectious humans recover at a constant 

rate, σ or dies as consequence of infection, at a disease-induced 

death rate δ. After infection, immune humans retain their immu- 

nity for life. 

– Following [27] , the stage structured model is used to de- 

scribe the vector population dynamics, which consists of three 

main stages: embryonic (E), larvae (L) and pupae (P). Even if eggs 

(E) and immature stages (L and P) are all aquatic, it is important 

to dissociate them because, for the control point of view, drying 

the breeding sites does not kill eggs, but only larvae and pupae. 

Moreover, chemical interventions on the breeding sites has impact 

on the larvae population, but not on the eggs [27] . The number of 

laid eggs is assumed proportional to the number of females. The 

system of stage structured model of aquatic phase development of 

vector is given by (see [27] for details) ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ E = μb 

(
1 − E 


E 

)
(S v + E v + I v ) − (s + μE ) E 

˙ L = sE 

(
1 − L 


L 

)
− (l + μL ) L 

˙ P = lL − (θ + μP ) P 

Unlike the authors of [27] , we take into account the pupal stage in 

the development of the vector. This is justified by the fact that they 

do not feed during this transitional stage of development, as they 

transform from larvae to adults [10,31] . So, the control mechanisms 

cannot be applied to them. 

With a rate θ , pupae become female Adults. Each individual 

vector compartment goes out from the dynamics at natural mor- 

tality rates μv . The vector susceptible population is decreased fol- 

lowing infection, which can be acquired via effective contact with 
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