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a b s t r a c t

High-throughput, genome-scale data present a unique opportunity to link host to pathogen on a molecular

level. Forging such connections will help drive the development of mathematical models to better under-

stand and predict both pathogen behavior and the epidemiology of infectious diseases, including malaria.

However, the datasets that can aid in identifying these links and models are vast and not amenable to sim-

ple, reductionist, and univariate analyses. These datasets require data mining in order to identify the truly

important measurements that best describe clinical and molecular observations. Moreover, these datasets

typically have relatively few samples due to experimental limitations (particularly for human studies or in

vivo animal experiments), making data mining extremely difficult. Here, after first providing a brief overview

of common strategies for data reduction and identification of relationships between variables for inclusion

in mathematical models, we present a new generalized strategy for performing these data reduction and re-

lationship inference tasks. Our approach emphasizes the importance of robustness when using data to drive

model development, particularly when using genome-scale, small-sample in vivo data. We identify the use of

appropriate feature reduction combined with data permutations and subsampling strategies as being critical

to enable increasingly robust results from network inference using high-dimensional, low-observation data.

© 2015 Elsevier Inc. All rights reserved.

Abbreviations

ANOVA Analysis of variance.

ARACNE Algorithm for reconstruction of accurate cellular networks.

BN Bayesian network.

CLR Context likelihood of relatedness.

DREAM Dialogue for reverse engineering assessment of methods.

FDR False discovery rate.

FOM Figure of merit.

MI Mutual information.

MMC Modulated modularity clustering.

MRMR Maximum relevance/minimum redundancy.

MRNET Minimum redundancy networks.

PCA Principal component analysis.

PLS-DA Partial least squares discriminant analysis.
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RFE Recursive feature elimination.

SVM Support vector machine.

TMI Total mutual information.

1. Introduction

The proliferation of genome-scale experimental analysis

techniques—proteomics, transcriptomics, metabolomics, and

others—brings with it numerous challenges in data analysis. With

many more measurements (or variables) than observations, it is

complex (both conceptually and computationally) to identify those

variables that are most important in determining the phenotype or

outcome of a system, as well as how these variables interact with

each other. The identification of these variables and interactions is

a crucial step in most downstream work, whether the development

of diagnostics or the detailed study and modeling of a biological

system.

Modeling of infectious diseases is a particularly salient and im-

portant example of where addressing this challenge is critical. The

mechanisms, presentation, and transmission of infectious disease are

quite complex and depend on a number of factors including the host,

the pathogen, the environment, and potentially even the vector.
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Malaria, for example, is a disease caused by five different species

of Plasmodium, and each of these pathogens can cause different clin-

ical presentations and degrees of severity of the disease. Plasmodium

vivax infections are typically characterized by fever spikes every 48 h,

but the shorter life cycle of P. knowlesi typically manifests as a daily

spike in fever [1]. Around 10% of P. falciparum infections result in se-

vere malaria, with somewhere between 10% and 50% of those severe

cases being fatal [2], while P. vivax infections may more rarely cause

severe malaria [3]. Within the same species, specific strains of the

parasite can be quite different, causing (for example) varying effi-

ciencies of vector infection (and thus of disease transmission) [4] or

strain-specific resistance to certain classes of drugs [5,6]. All of these

parasite variations are on the backdrop of host variations, which can

have a tremendous impact on the presentation of the disease even be-

tween different individuals infected by isogenic parasites. Complicat-

ing the situation even further is that all of the above factors (whether

related to host, parasite, or vector) are only things already known to

be key in the disease, with potentially numerous additional critical

factors that we just have not discovered yet.

With such complex dependence on different aspects of the host

and pathogen, varying phenotypic effects after infection, and the gen-

eral uncertainty about what all of the controlling factors in disease

progression are, creation of mathematical models of infectious dis-

eases is obviously quite difficult. One critical question, even if by

virtue of its primacy in the process of developing models, is: what

variables should be included in the model? As suggested above, a

wealth of proteomics, metabolomics, and other measurements can

provide the data that can help to build an effective model, but sift-

ing through the large volume of measurements that do not correlate

to the phenomenon of interest to identify the ones that do is a mon-

umental task requiring appropriate statistical treatment. Even sup-

posing that the right variables to include in a mathematical model

could be identified, the notion of how to include these variables is the

next significant task. One may know that a specific gene is important

in a process, but that does not sufficiently inform the mathematical

model. Does that gene affect only one other molecule (variable) in

the system? If so, which variable does it affect? If it affects multiple

variables, how many does it affect, and which ones? And then beyond

this, if one knows which interactions to include, there is still the open

question of the appropriate functional form to represent this interac-

tion.

Thus, the ability to use modern high-throughput, high-

information content, genome-scale data effectively will be essential

in developing models for infectious diseases. These models may be

on a molecular scale, indicating transcriptional or other regulation

within a pathogen or indicating the interactions between host and

pathogen biology. They may also be on a much larger scale, capturing

epidemiological dynamics as a function of key aspects of the hosts,

pathogens, and vectors. In either case, it is crucial that the methods

used to identify the variables and relationships to be included in the

model are as robust and accurate as possible. This is particularly rele-

vant for cases where taking a large number of samples is not feasible,

particularly in vivo clinical studies involving infected humans in

need of treatment and non-human primate experiments where both

cohort size and sampling frequency are limited on ethical grounds.

One must extract as much information as possible in as reliable a

way as possible with a comparatively small number of observations.

Here, we will first briefly review some of the common approaches

to whittle genome-scale data into candidate knowledge for inclu-

sion in mathematical models. We will then focus on one specific and

promising approach to achieve this goal, Bayesian networks, and ad-

dress some of the difficulties inherent in using this approach. We con-

sider this task particularly in the context of systems where we expect

to have a fairly small number of observations with significant bio-

logical variability. We present a unique approach that uses clustering

to reduce the dimensionality of a dataset, concatenation of clustered

genes to increase the effective number of observations, and permu-

tation and cross-validation analysis to ensure that the results of net-

work inference are trustworthy for the purposes of modeling and not

disproportionately influenced by random variation. Taken together,

this represents an efficient and reasonable approach to drive the gen-

eration or improvement of mathematical models in infectious disease

research.

2. Background

Multivariate dimensional reduction, classification, and visualiza-

tion approaches are often used as first-line analyses in the interpreta-

tion of high-variable, low-observation genome-scale datasets. Meth-

ods include principal component analysis (PCA), partial least squares

discriminant analysis (PLS-DA), and numerous variations thereof that

reduce the original variable space to a few composite variables [7,8].

In the ideal case, samples from the same group are close to each other

in the reduced feature space, and the weight of the original variables

in these key composite variables can be used to drive further down-

stream interpretation and analysis, including ontological analyses

like enrichment analysis. Other methods for group classification tasks

(e.g., support vector machines or artificial neural networks) can cre-

ate classifiers capable of separating two sample classes, though with

potentially increased difficulty in interpreting the biological meaning

of the mathematical representations in the inferred classifier.

What such classification and dimensional reduction approaches

largely do not permit is the ability to discover new interactions be-

tween variables. Much richness in biological systems is driven by

the complexities of regulation, which manifests itself by the appar-

ent correlation of biomolecules across time or experimental con-

ditions. The ability to identify interactions between variables is a

valuable tool to learn more about the molecular level of novel or un-

derstudied complex biological systems, and in particular it is valu-

able for knowing what variables should be included in mathematical

models of such systems.

As discussed in Section 1, the process of reducing genome-scale

data to a form that can be integrated into mathematical models can

be broadly divided into three steps: feature selection, identification of

candidate interactions between features, and mathematical formula-

tion of those candidate interactions.

2.1. Feature selection

Feature selection is the process of reducing a larger set of variables

to a subset for use in model construction or further analysis. This is

due to the expectation (quite appropriate for genome-scale data) that

a significant fraction of the measured variables are either not rele-

vant to the task at hand or are redundant. The latter is a particularly

troubling problem for the construction of mathematical models, as

the inclusion of redundant variables will greatly increase the com-

putational complexity of estimating parameters in the mathematical

model, and may in fact prevent many parameters from being identifi-

able. Feature selection methods may be independent filters, they may

be search-and-score approaches that select subsets of features and

assess the accuracy of the model derived from those features (“wrap-

per” methods), or they may be directly embedded into (and specific

to) the model development [9]. A set of common methods to perform

this task is described herein; while representative, this list is by no

means exhaustive.

Common embedded methods include recursive feature elimina-

tion (RFE) and Lasso (the least absolute shrinkage and selection op-

erator). RFE is an embedded approach often used in the development

of support vector machines (SVMs), a powerful tool for classification

problems [10–12]. In this approach, variables deemed unimportant

in early model development are considered candidates for elimina-

tion from the model, with progressively more parsimonious models
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