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a b s t r a c t

Oncolytic virotherapy is a tumor treatment which uses viruses to selectively target and destroy cancer cells.

Fusogenic viruses, capable of causing cell-to-cell fusion upon infection of a tumor cell, have shown promise in

experimental studies. Fusion causes the formation of large, multinucleated syncytia which eventually leads

to cell death. We formulate a partial differential equations model with a moving boundary to describe the

treatment of a spherical tumor with a fusogenic oncolytic virus. Fusion, lysis, and budding are incorporated

as mechanisms of viral spread, resulting in nonlocal integral terms.

A proof is presented for existence and uniqueness of global solutions to the nonlinear hyperbolic–parabolic

system. Numerical simulations demonstrate convergence to spatially homogeneous solutions and exponential

growth or decay of the tumor radius depending on viral burst size and rate of fusion. Long-term tumor radius

is shown to decrease with increasing values of viral burst size while the effect of the rate of fusion on tumor

growth is demonstrated to be nonmonotonic.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Tumor virotherapy uses replication-competent viruses which se-

lectively infect, replicate in, and kill cancer cells. Commonly these

viruses cause cell death through lysis; another mode of viral propa-

gation is budding [1,2]. Clinical trials have demonstrated varying de-

grees of success for the therapy with limitations predominantly due

to barriers to viral spread and the immune response to the virus [3].

A particularly interesting mechanism by which some oncolytic

viruses act is through the formation of large, multinucleated cells

called syncytia. When such a virus infects a tumor cell, the expression

of fusogenic membrane glycoproteins on the surface of the cell allow

for fusion with neighboring cells. The resulting syncytium will die by

proteolytic digestion from within [4]. In this way, a significant by-

stander effect is created; experiments show that a single transfected

cell can kill in excess of 150–200 bystander cells [5]. A measles vac-

cine strain, modified herpes simplex virus, and recombinant vesicular

stomatitis virus have been shown to cause an increased cytopathic ef-

fect through the formation of syncytia [2,6,7]. The death of syncytia

has also been shown to cause a potent antitumor immune response

[2,4,8,9]. Thus, while demonstrating sufficient therapeutic efficacy
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remains a challenge for virotherapy, fusogenic oncolytic viruses hold

promise for future clinical use.

Various mathematical models have been formulated to describe

virotherapy treatment of tumors mediated by lysis [10–15]. The only

models to our knowledge which consider syncytia formation are those

by Bajzer and Dingli et al. [16–19]. Their deterministic models are

formulated as ordinary differential equations which assume the law

of mass action. However, a well-mixed tumor cell population is not

biologically realistic and making this assumption may be obscuring

relevant spatial effects. Our aim, therefore, is to develop a model for

virotherapy with a fusogenic oncolytic virus which takes into account

the inherent spatial dependency of syncytia-forming fusion. We also

include lysis and budding, allowing the model to be tailored to a range

of oncolytic viruses with differing viral spread mechanisms.

Section 2 describes the formulation of the model. A proof of well-

posedness is given in Section 3. Numerical simulations and results are

included in Section 4, followed by a brief discussion in Section 5.

2. Formulation of the model

We adapt a similar setup to the partial differential equations

models of Wu et al. [10] and Friedman et al. [13] but also incor-

porate cell-to-cell fusion. We allow for viral budding from infected

and syncytia-incorporated cells as well as viral diffusion but neglect

necrosis to improve mathematical tractability. We assume that the

tumor is spherically symmetric with radius R(t). We let x(r, t) be the

density of uninfected tumor cells whose center is a distance r from

http://dx.doi.org/10.1016/j.mbs.2015.02.009

0025-5564/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.mbs.2015.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.02.009&domain=pdf
mailto:jacobsen.50@mbi.osu.edu
mailto:pilyugin@ufl.edu
http://dx.doi.org/10.1016/j.mbs.2015.02.009


170 K. Jacobsen, S. S. Pilyugin / Mathematical Biosciences 270 (2015) 169–182

Fig. 1. Model interaction network. Uninfected tumor cells become infected upon entry

of a free virus. Infected cells undergo lysis resulting in release of free viruses. Uninfected

and infected cells can fuse with neighboring cells to become syncytia. Infected cells

and syncytia release free viruses via budding.

the center of the tumor. Similarly, y(r, t) and z(r, t) represent the den-

sity of infected tumor cells and syncytia-incorporated cells, respec-

tively. We assume that all tumor cells are spherical with radius rc. We

let v(r, t) be the density of free viral particles which we assume have

negligible volume. We model the tumor as an incompressible fluid

under an advective field velocity u(r, t).
The dynamics of the tumor cell and virus populations are based

on the network shown in Fig. 1. We suppose that only uninfected

cells proliferate, at a rate λ. Uninfected cells become infected at a

rate that is proportional to the average number of viral particles on

the surface of the cell. The coefficient of proportionality, β , takes into

the account the probability of success of viral entry. The derivation

of the corresponding integral expression in Eqs. (1) and (2) will be

discussed in Section 2.2. We make the simplifying assumption that a

cell which is syncytia-incorporated is still spherical with radius rc. An

uninfected cell can fuse into a syncytia if it is in contact with either an

infected cell or a syncytia-incorporated cell. We assume this fusion

occurs at a rate with coefficient ρ and is proportional to the average

density of neighboring infected and syncytia-incorporated cells. We

will derive in Section 2.2 the exact formulation of the corresponding

integral term in Eqs. (1) and (3). A single infected cell can be incorpo-

rated into a syncytia through surface contact with a cell of any other

type, again at a rate proportional to ρ . Since we neglect necrosis we

assume that immediately upon death a cell is removed. For infected

cells this process occurs at rate δ and for syncytia at rate μ.

We allow free viral particles to be generated through two mech-

anisms, budding and lysis. An infected or syncytia-incorporated cell

releases viral particles from their surface through budding at a rate

α. It is hypothesized that syncytia are removed via a non-apoptotic

mechanism that doesn’t allow viral release [4]. Therefore we assume

that only infected cells undergo lysis upon death, releasing N viral

particles. More detail on the corresponding budding and lysis terms

in Eq. (4) is discussed in Section 2.2. We further assume that free viral

particles are removed at rate γ .

Therefore, for 0 < r ≤ R(t) and t > 0, the dynamics of the state

variables are determined by

Dx

Dt
≡ ∂x(r, t)

∂t
+ 1

r2

∂

∂r
(r2u(r, t)x(r, t))

= λx(r, t)− βx(r, t)

|Irc
(r, t)|

∫
Irc (r,t)

v(s, t)ds

− ρx(r, t)

|I2rc
(r, t)|

∫
I2rc (r,t)

y(s, t)+ z(s, t)ds, (1)

Dy

Dt
≡ ∂y(r, t)

∂t
+ 1

r2

∂

∂r
(r2u(r, t)y(r, t))

= βx(r, t)

|Irc
(r, t)|

∫
Irc (r,t)

v(s, t)ds − (ρθ + δ)y(r, t), (2)

Dz

Dt
≡ ∂z(r, t)

∂t
+ 1

r2

∂

∂r
(r2u(r, t)z(r, t))

= ρx(r, t)

|I2rc
(r, t)|

∫
I2rc (r,t)

y(s, t)+ z(s, t)ds + ρθy(r, t)− μz(r, t), (3)

∂v(r, t)

∂t
− κ

1

r2

∂

∂r

(
r2 ∂v(r, t)

∂r

)

= Nδ

|Jrc
(r, t)|

∫
Irc (r,t)

[
r2

c − (r − s)2
]

y(s, t)ds

+ α

|Irc
(r, t)|

∫
Irc (r,t)

y(s, t)+ z(s, t)ds − γ v(r, t) (4)

where Irc(r, t) = (max[0, r − rc], min[R(t), r + rc]) and

|Jrc
(r, t)| =

∫
Irc (r,t)

[
r2

c − (r − s)2
]

ds.

The last term on the left-hand side in each of Eqs. (1), (2), and (3)

corresponds to advection. Note that the viral particles, being of negli-

gible volume, do not undergo advection but do diffuse with diffusion

coefficient κ .

Treating the tumor as an incompressible fluid, we assume that the

total tumor cell density has a constant value θ . That is,

x(r, t)+ y(r, t)+ z(r, t) = θ (5)

for 0 < r ≤ R(t). Therefore summing Eqs. (1), (2) and (3) gives

θ

r2

∂

∂r
(r2u(r, t)) = λx(r, t)− δy(r, t)− μz(r, t). (6)

Then the advection term, in Eq. (1) for example, by the product rule

becomes

−1

r2

∂

∂r
(r2u(r, t)x(r, t)) = −u(r, t)

∂x(r, t)

∂r

− x(r, t)

θ
[λx(r, t)− δy(r, t)− μz(r, t)].

By Eq. (5) we have z = θ − x − y and we can reduce the dimension of

the system. By integrating Eq. (6) and eliminating z, we present the

first complete formulation of our model. For 0 < r ≤ R(t) and t > 0,

∂x(r, t)

∂t
+ u(r, t)

∂x(r, t)

∂r
= λx(r, t)− βx(r, t)

|Irc
(r, t)|

∫
Irc (r,t)

v(s, t)ds

− ρx(r, t)

|I2rc
(r, t)|

∫
I2rc (r,t)

θ − x(s, t)ds

−x(r, t)

θ
[λx(r, t)− δy(r, t)− μ(θ − x(r, t)− y(r, t))], (7)

∂y(r, t)

∂t
+ u(r, t)

∂y(r, t)

∂r

= βx(r, t)

|Irc
(r, t)|

∫
Irc (r,t)

v(s, t)ds − (ρθ + δ)y(r, t)

−y(r, t)

θ
[λx(r, t)− δy(r, t)− μ(θ − x(r, t)− y(r, t))], (8)

∂v(r, t)

∂t
− κ

1

r2

∂

∂r

(
r2 ∂v(r, t)

∂r

)

= Nδ

|Jrc
(r, t)|

∫
Irc (r,t)

[
r2

c − (r − s)2
]

y(s, t)ds

+ α

|Irc
(r, t)|

∫
Irc (r,t)

θ − x(s, t)ds − γ v(r, t), (9)
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