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a b s t r a c t

A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and three dis-

tributed delays is investigated, in which the first distributed delay describes the intracellular latency for the

virus-to-cell infection, the second delay represents the intracellular latency for the cell-to-cell infection, and

the third delay describes the time period that viruses penetrated into cells and infected cells release new

virions. The global stability analysis of the model is carried out in terms of the basic reproduction number

R0. If R0 ≤ 1, the infection-free (semi-trivial) equilibrium is the unique equilibrium and is globally stable; if

R0 > 1, the chronic infection (positive) equilibrium exists and is globally stable under certain assumptions.

Examples and numerical simulations for several special cases are presented, including various within-host

dynamics models with discrete or distributed delays that have been well-studied in the literature. It is found

that the global stability of the chronic infection equilibrium might change in some special cases when the as-

sumptions do not hold. The results show that the model can be applied to describe the within-host dynamics

of HBV, HIV, or HTLV-1 infection.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

When a virus enters the human body, it targets cells with specific

receptors. The viral capsid protein binds to the specific receptors on

the host cellular surface and injects its core. For example, human im-

munodeficiency virus (HIV) infects vital cells in the human immune

system such as helper T cells (specifically CD4+ T-cells). Its surface

protein, gp120, specifically interacts with the chemokine receptors

on the surface of CD4+ T-cells. Once bound to the target cell, the HIV

RNA and various enzymes are injected into the cell. The hepatitis B

virus (HBV) gains entry into the cell by binding to the surface recep-

tor NTCP on the surface. Because HBV multiplies via RNA made by a

host enzyme, the viral genomic DNA is transferred to the cell nucleus

by host proteins called chaperones. After an intracellular period as-

sociated with transcription, integration, and the production of capsid

proteins, the infected cell releases hundreds of virions that can infect

other cells.

Mathematical models have been developed to describe the

within-host dynamics of various viral infections, mostly focusing on
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virus-to-cell spread in the bloodstream, such as human immunodefi-

ciency virus (HIV) (Kirschner and Webb [23], Müller et al. [30], Nowak

and Bangham [34], Nowak and May [35], Perelson et al. [37], Perelson

and Nelson [38], Wodarz et al. [48]), hepatitis C virus (HCV) (Dixit

et al. [12], Neumann et al. [33], Dahari et al. [8], DebRoy et al. [9]), hu-

man T-cell lymphotropic virus I (HTLV-1) (Stilianakis and Seydel [45],

Wodarz et al. [49]), etc. The basic within-host viral infection model

consists of three components: uninfected target cells, infected target

cells and free virus (Bonhoeffer et al. [5], Nowak and May [35]).

On the other hand, great attention has also been paid to the study

of in vitro cell-to-cell spread of virus since many features are easier to

determine experimentally in tissue cultures than in the bloodstream.

For example, HIV is thought to be active in areas such as the lymph

nodes and the brain where cell-to-cell spread would be a much more

important mode of infection than virus-to-cell spread (Dimitrov et al.

[11], Sturdevant et al. [47]). The data of Gummuluru et al. [18] demon-

strate that cell-to-cell spread of HIV is the predominant route of vi-

ral spread since viral replication in a system with rapid cell turnover

kinetics depends on cell-to-cell transfer of virus. Sigal et al. [43] ex-

amined replication from cell-to-cell spread of HIV in the presence of

clinical drug concentrations using a stochastic infection model and

found that replication is intermittent without substantial accumu-

lation of mutations. Also, Bangham [2] reported that HTLV-I infec-

tion is achieved primarily through cell-to-cell contact. Cell-to-cell
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spread not only facilitates rapid viral dissemination but may also pro-

mote immune evasion and influence disease (Sattentau [41]). Based

on these observations, researchers have constructed within-host vi-

ral infection models for the dynamics of cell-to-cell transmission of

HIV (Culshaw et al. [7]).

Upon infection with viruses, there is a short intracellular “eclipse

phase”, during which the cell is infected but has not yet begun pro-

ducing virus. For HIV infection, Spouge et al. [44] pointed out that

there are two methods to model this eclipse phase, by a time de-

lay or by an explicit class of latently infected cells, but did not con-

sider it in their models. Perelson et al. [37] studied a system with an

explicit class of latently infected cells. Herz et al. [21] assumed that

cells become productively infected τ time units after initial infection

and found that including an intracellular delay did change the esti-

mates of the viral clearance rate but did not change the productively

infected T cell loss rate. Culshaw and Ruan [6] showed that such an

intracellular delay did not change the stability of the infected steady

state for clinically reported parameter values. Mittler et al. [29] as-

sumed that the intracellular delay was continuous and varied accord-

ing to a gamma distribution and observed dramatic changes in the

estimates of viral clearance. See also Banks et al. [3], Dixit et al. [13],

Grossman et al. [15–17], Lloyd [28], Nelson et al. [31,32], Lai and Zou

[25], Li and Shu [26], Pawelek et al. [36], Shu et al. [42], Wang et al.

[46], and Zhu and Zou [50] for HIV infection model with delay; Katri

and Ruan [22] for HTLV-1 infection models with delay; and Eiken-

berry et al. [14] for HBV infection models with delay.

Culshaw et al. [7] proposed a two-dimensional model of cell-to-

cell spread of HIV in tissue cultures, in which the intracellular in-

cubation period is modeled by a gamma distribution, and found out

that, differing from the cell-to-free virus spread models, the cell-to-

cell spread models can produce infective oscillations in typical tissue

culture parameter regimes and the latently infected cells are instru-

mental in sustaining the infection.

To have a better and complete understanding of the within-

host infection dynamics inside the whole body, it is necessary to

take both virus-to-cell and cell-to-cell transmissions into consid-

eration in modeling viral infections. In fact, recently Lai and Zou

[25] proposed a delay differential equations model to include both

infection modes of viral infection and spread, in which infection

ages via viruses and infected cells are described by two distributed

delays. They observed that the basic reproduction number of their

model might be underevaluated if either cell-to-cell spread or

virus-to-cell infection is neglected. Pourbashash et al. [39] used

ordinary differential equations to model the two mechanisms

of viral infection and conducted the local and global stability

analysis of the model. In general, there are very few studies con-

sidering both virus-to-cell and cell-to-cell transmissions on viral

infections.

In this paper we consider a within-host viral infection model with

both virus-to-cell and cell-to-cell transmissions and three distributed

delays, in which the first distributed delay describes the intracellular

latency for the virus-to-cell infection (Mittler et al. [29]), the second

delay represents the intracellular latency for the cell-to-cell infection

(Culshaw et al. [7]), and the third delay describes the time period that

viruses penetrated into cells and infected cells release new virions

(Nelson and Perelson [32]). The mathematical model is constructed

in Section 2. In Section 3, preliminaries are introduced, including the

positivity and boundedness of solutions, as well as the existence of an

infection-free equilibrium and a chronic infection equilibrium. The

global stability of equilibria is obtained in Section 4. Finally, exam-

ples and numerical simulations for several special cases of the main

model are presented, including various within-host dynamics mod-

els with discrete or distributed delays that have been well-studied

in the literature. Besides the stability of equilibria under some

conditions, it is also shown that periodic oscillations occur via Hopf

bifurcations.

Fig. 1. Transfer diagram of the within-host viral infection.

2. Mathematical model

The compartmental model includes the concentrations of healthy

target cells T(t) which are susceptible to infection, infected cells T∗(t)

that produces viruses, and viruses V(t). As assumed in De Leenheer

and Smith [10], if there is no infection in the healthy target cells, the

dynamics of T satisfy the equation

dT (t)

dt
= n(T (t)), (2.1)

where n(T) is a function describing the natural change (including both

production and turnover) of healthy target cells. Furthermore, the

function n(T) is assumed to satisfy the following properties:

(H1) n(T) is continuously differentiable and there exists T0 > 0 such

that n(T 0) = 0 and n(T )(T − T 0) < 0, ∀T �= T 0;
(H2) n′(T) < 0, ∀T ∈ [0, T0].

There are two typical functions for n(T): n(T ) = h − dT T and

n(T ) = h − dT T + rT (1 − T
K ) with h, dT, r, K > 0, see Culshaw and Ruan

[6], Li and Shu [26], Nowak and Bangham [34], Perelson and Nelson

[38], Shu et al. [42], Wang et al. [46], for example.

Let β1 be the virus-to-cell infection rate, β2 be the cell-to-cell

infection rate, μ1 and c be death rates of actively infected cells

and viruses, respectively. e−μ1s1 is the survival rate of cells that

are infected by viruses at time t and become activated infected s1

time later with a probability distribution f1(s1). Then
∫ ∞

0 β1T (t −
s1)V (t − s1) f1(s1)e−μ1s1 ds1 describes the newly activated infected

target cells which are infected by free viruses s1 time ago (Mittler

et al. [29]). Similarly,
∫ ∞

0 β2T (t − s2)T ∗(t − s2) f2(s2)e−μ1s2 ds2 repre-

sents the newly activated infected target cells which are infected by

infected cells s2 time ago (Culshaw et al. [7]). Let s3 be the random

variable that is the time between viral RNA transcription and viral

release and maturation with a probability distribution f3(s3). The in-

tegral
∫ ∞

0 e−μ2s3 f3(s3)T ∗(t − s3)ds3 describes the mature viral parti-

cles produced at time t (Nelson and Perelson [32]). b is the average

number of viruses that bud out from an infected cell, and e−μ2s3 is

the survival rates of cells that start budding from activated infected

cells at time t and become free mature viruses s3 time later. Note that

s1, s2, and s3 are all integration variables, without loss of generality,

they all will be represented by s.

A transfer diagram for the vivo infection of viruses is shown in

Fig. 1. The model is given as follows:

dT (t)

dt
= n(T (t)) − β1T (t)V (t) − β2T (t)T ∗(t),

dT ∗(t)

dt
=

∫ ∞

0

β1T (t − s)V (t − s) f1(s)e−μ1sds

+
∫ ∞

0

β2T (t − s)T ∗(t − s) f2(s)e−μ1sds − μ1T ∗(t),

dV (t)

dt
= b

∫ ∞

0

e−μ2s f3(s)T ∗(t − s)ds − cV (t). (2.2)

fi(s) : [0, ∞) → [0, ∞) are probability distributions with compact sup-

port, fi(s) ≥ 0, and
∫ ∞

0 fi(s)ds = 1, i = 1, 2, 3. The distribution was



Download English Version:

https://daneshyari.com/en/article/4499890

Download Persian Version:

https://daneshyari.com/article/4499890

Daneshyari.com

https://daneshyari.com/en/article/4499890
https://daneshyari.com/article/4499890
https://daneshyari.com

