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a b s t r a c t

Host and/or vector movement patterns have been shown to have significant effects in both empirical studies

and mathematical models of vector-borne diseases. The processes of economic development and globaliza-

tion seem likely to make host movement even more important in the future. This article is a brief survey of

some of the approaches that have been used to study the effects of host movement in analytic mathematical

models for vector-borne diseases. It describes the formulation and interpretation of various types of spatial

models and describes a few of the conclusions that can be drawn from them. It is not intended to be compre-

hensive but rather to provide sufficient background material and references to the literature to serve as an

entry point into this area of research for interested readers.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Vector-borne diseases have long been recognized as significant

threats to public health. In recent years globalization, development,

and global change have altered the spatial distribution and move-

ment patterns of human populations, introduced pathogens to places

where they were not previously present, and modified environments

in ways that affect vector populations. Some of the effects of those

changes are not surprising. Greater connectivity has increased the

risk of biological invasions by novel pathogens, and indeed such in-

vasions have occurred. The case of West Nile virus in North Amer-

ica is an important example. Some other effects, or the absence

thereof, are more surprising. Although development has caused hu-

man populations in some regions to move to urban environments

which are inhospitable to vectors, malaria may still persist in places

where transmission rates are very low, and there are reasons to

think that this effect may be related to human movement patterns

(see [9,22,27]). There have been a number of studies focussed on

the role of host movement on the transmission of vector-borne dis-

eases; see for example [1,5,18,19,30,36,37,45]. The goal of this pa-

per is to describe some of the modeling approaches that have been

used to study spatial effects, especially the effects of host movement,

in vector-borne disease systems. It is not intended to be a system-

atic review, but rather an introduction to the ideas and literature in

the area. Although the references are not comprehensive, the inter-

ested reader should be able to find much additional literature on spa-

tial models for vector-borne diseases in the works that they cite, or

by searching for works that cite them. The underlying local disease
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dynamics in the spatial models described in this paper will be for-

mulated in terms of Ross-Macdonald models, but the methods for

extending local models to include spatial effects can be and have

been used with other types of epidemiological models; see for ex-

ample [2,3]. The notation used in this paper is based on that used

in [5].

2. Some basic models

2.1. Nonspatial models

Spatial models in epidemiology are typically constructed by start-

ing with a non-spatial model for disease transmission and extend-

ing it or modifying it to incorporate spatial effects. The classical

model for the local transmission of vector-borne diseases is the Ross-

Macdonald model. A discussion of that model and its history is given

in [35]. The version described here is similar to the one derived by

[33] but there are many variations and extensions in the literature. A

systematic review of vector-borne disease models from 1970 to 2010

is given by [26]. The Ross-Macdonald model was originally formu-

lated for malaria. Related models can be used to study other vector-

borne diseases but some modifications may be required; for example,

for Dengue fever the presence of distinct serotypes of the pathogen is

important and so it may be necessary to keep track of the serotypes of

the viruses causing infection, while for Rift Valley fever there is ver-

tical transmission of the disease in some of its vectors in some loca-

tions. However, the methods for incorporating spatial effects would

be similar for most mosquito-borne diseases. There may be other

considerations for other types of disease vectors that require distinct

modeling approaches; for example, the movement patterns and life
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cycles of ticks are very different from those of mosquitoes, partly be-

cause ticks are transported by their hosts, so separating vector and

host movements in models for tick-borne diseases can be somewhat

problematic. In what follows we will generally assume that the dis-

ease vectors are mosquitoes and the hosts are humans and will some-

times refer to them in those ways. The state variables for the Ross-

Macdonald model are the fractions of the host and vector populations

that are infectious, denoted by x and y. The model also involves vari-

ous parameters, as shown:

x fraction of infectious individuals in human population,

y fraction of infectious individuals in mosquito population,

a human feeding rate of mosquitoes (number of bites on

humans, per mosquito, per unit time),

b transmission efficiency from infectious mosquitoes to

humans,

c transmission efficiency from infectious humans to

mosquitoes,

m mortality rate of mosquitoes,

r recovery rate of humans,

n incubation period from the time a mosquito becomes

infected until it becomes infectious,

M ratio of mosquitoes to humans.

In terms of those variables and parameters the non-spatial model

takes the form

dx

dt
= Maby(1 − x) − rx,

dy

dt
= acx(e−mn − y) − my. (1)

The model (1) is highly idealized. It does not allow for variable pop-

ulations of humans or mosquitoes. Unlike many models for directly

transmitted diseases, it only treats two classes of individuals explic-

itly, namely infectious humans and infectious mosquitoes. However,

it does implicitly take into consideration the fact that there is a la-

tency period between the time mosquitoes are infected and the time

they become infectious. The distinction between infected and infec-

tious is significant in mosquitoes because their lifespans are so short

that many infected individuals may die between the time of being

infected and the time they would have become infectious. That is

the reason for the term e−mn in the equation for the vectors in (1);

it accounts for the loss of infected but not yet infectious individu-

als. (Since humans are removed from the infectious class by recov-

ery rather than death and the timescale for that is relatively long it

is less important to consider the time it takes for humans to progress

from infected to infectious.) It can be argued that more complex mod-

els which explicitly include latent classes of individuals who are in-

fected but not yet infectious, that is, SEI or SEIR type models, would

be more realistic; see [4,11,12,44]. Similarly, since there is heterogene-

ity in the rates at which different types of individuals are bitten by

mosquitoes, it can also be argued that multigroup models would be

more realistic; see [10]. In fact, such issues have been considered and

more detailed models that take some of these complexities into ac-

count have been formulated. The primary focus of this paper is on

describing how movement can be modeled and what sorts of effects

movement can have, so I will illustrate those by using simple models

based on (1) rather than more complex and realistic epidemiologi-

cal models. To formulate some of the spatial models we will want to

work with the total populations of infected individuals rather than

the fractions of populations rather than the fractions of populations

consisting of infectious individuals. The reason is that some spatial

models allow changes in the size of local populations because of the

effects of movement. In that case M may not be constant. If we use

the variables

H the total human population,

X the number of infected humans,

V the total mosquito population,

Y the number of infected mosquitoes,

we can replace M with V/H. In general, X = xH and e−mnY = yV . Using

those relations we can rewrite (1) as

dX

dt
= abe−mn

H
Y(H − X) − rX,

dY

dt
= ac

H
X(V − Y) − mY. (2)

This formulation assumes that there is no change in the local popu-

lations of humans or mosquitoes because of disease or demography

(there may be turnover of individuals), but allows for the possibility

of population change due to movement from other locations. It is pos-

sible to construct models that allow for demography or more complex

disease processes (e.g. SEIR disease dynamics) within populations as

well as movement. As an example we introduce the variables SH, EH,

IH, and RH denoting populations of susceptible, infected, infectious,

and recovered (immune) humans, and SV, EV, and IV denoting pop-

ulations of susceptible, infected, and infectious mosquitoes. We also

need new parameters and terms in the model as follows:

λH, λV birth rates of humans and mosquitoes, respectively,

fH(H), fV(V) natural death rates of humans and mosquitoes,

νH, νV rates of progression from infected to infectious classes,

α rate of progression from infected to immune,

β rate of loss of immunity,

γ rate of extra mortality due to infection.

The remaining variables and parameters will be the same as in (2).

(The parameter m in (2) corresponds to the coefficient of the linear

term in the mortality rate fV(V), while n is inversely proportional to

νV.) Using these variables and parameters we can formulate a non-

spatial model that is similar to those used to develop spatial models

in [11]:

dSH

dt
= λHH − fH(H)SH − ab

H
SHIV + rIH + βRH,

dEH

dt
= − fH(H)EH − νHEH + ab

H
SHIV ,

dIH
dt

= νHEH − fH(H)IH − αIH − γ IH − rIH,

dRH

dt
= αIH − fH(H)RH − βRH,

dSV

dt
= λVV − fV (V)SV − ac

H
SV IH,

dEV

dt
= − fV (V)EV − νV EV + ac

H
SV IV ,

dIV
dt

= νV EV − fV (V)IV . (3)

The model (3) can be extended to a spatial model in the same ways

as (2), the only difference being that (3) has more components which

could have their own distinct movement patterns. Obviously, various

other extensions of (2) may be needed to describe vector borne dis-

eases with multiple serotypes (such as Dengue), with nonhuman as

well as human hosts (such as West Nile), or with vertical transmis-

sion in mosquitoes (such as Rift Valley Fever.) However, the general

approaches used in putting space and movement into the models will

the same as for (2).

2.2. Spatial modeling

There are two distinct approaches that have been used to incorpo-

rate spatial effects into epidemiological models in general and vector-

borne disease models in particular. One approach is to view space

implicitly and to consider being in a location to be an attribute anal-

ogous to belonging to the group associated with that location (if an
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