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a b s t r a c t

We study a time dependent partial differential equation (PDE) which arises from classic models in ecology

involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and

stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete

weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence

analysis of the algorithm is presented. We present some simulations of population development over some

irregular domains. Finally, we discuss applications in epidemiology and other ecological problems.
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1. Introduction

Empirical evidence shows that the structure of environments and

spatial scale can systematically influence population development

and interactions in a way that can be described by mathematical

models [9,11]. The first serious attempt to model population dy-

namics is credited to Malthus in 1798 [23], who hypothesized that

human populations grow geometrically while resources grow arith-

metically, thus eventually reaching a point in which the popula-

tion could not be sustained anymore; this linear growth model is

problematic since it allows unbounded population increase. A ma-

jor refinement was introduced by Verhulst in 1838 [30] by means

of a density-dependent logistic term in Malthus’ model, predicting

population growth if resources were available or population decay

if population surpassed resources; this model takes the form ṗ =
r0 p(1 − p/k), where p represents population density, r0 is the rate

of growth, and k represents the carrying capacity. Fisher [8] used in

1937 a diffusion operator to study the propagation of advantageous

genes in population; the same year, Kolmogorov and his collabora-

tors [14] studied the following reaction–diffusion equations in the
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one-dimensional setting:

∂ p

∂t
= D

∂2 p

∂x2
+ kp(1 − p) and

∂ p

∂t
= D

∂2 p

∂x2
+ F(p), (1.1)

where F(p) satisfies F(p) ≥ 0, F(0) = F(1) = 0, F ′(0) > 0, F ′(1) < 0 for

p ∈ [0, 1].

The logistic model has been central to the modern study of pop-

ulation dispersal in spatial domains [3,24]. Skellam’s influential pa-

per [27] in 1951 introduced a variation in Kolmogorov’s equation for

the study of phytoplankton; the resulting model was pt = d�p +
c1(x, y)p − c2(x, y)p2. This basic form of population dispersal is ap-

plicable in many notable cases ranging from population dispersal

to recent models of information diffusion in online social networks

[31]. Nevertheless, Skellam’s model is too simplistic in most prac-

tical cases; it assumes a lack of interactions with other species,

and that populations can grow at the same rate at low and high

densities. An important refinement to Kolmogorov’s model was in-

troduced by Lewis and Kareiva in 1993 [21]. The correlation hy-

pothesized by Allee in 1938 between population size and mean

individual fitness [1] was represented in Lewis and Kareiva’s model

by pt = d�p + r0 p(1 − p/k)(p − σ), where σ represents the popula-

tion below the carrying capacity below which the population growth

is negative. This is the foundation of the model we study in this paper.

More precisely, we are interested in solution of the following non-

linear time dependent partial differential equation: letting � ⊂ R
2 be
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a polygonal domain and �T = � × (0, T ]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ p(x, t)

∂t
= div (D(p, x)∇p(x, t))) + F(p(x, t)),

x = (x, y) ∈ �, t ∈ [0, T ]
p(x, t) ≥ 0, x ∈ �, t ∈ [0, T ]
p(x, t) = 0, x ∈ ∂�, t ∈ [0, T ]
p(x, 0) = p0, x ∈ �,

(1.2)

where D(p, x) is a diffusive term, e.g. D(p, x) = D > 0 and F(p) is

a growth function, e.g. F(p) = Ap(1 − p) which is a standard logis-

tic growth function with A being a nonnegative weighted function

over �. In this paper, we shall mainly study F(p) = Ap(1 − p)(p − σ),
where σ is a positive constant in [0, 1) and A(x, y) are nonnegative

functions on � × [0, T).

Exact solutions to Kolmogorov’s Eq. (1.1) have been found [22].

However, there does not appear to exist an exact solution to the dif-

fusion logistic model with Allee effect; while asymptotics and speed

of diffusion waves have been found analytically, the solutions to prob-

lem (1.2) over different domains remain mostly numerical. Lewis and

Kareiva [21] used finite differences. Roques et al. [26] used a second-

order finite elements method. Richter et al. [25] used finite elements

in a model that incorporated geographic features and population dis-

persal.

In this paper, we present in detail a numerical solution to the dif-

fusion logistic problem with Allee effect based on bivariate spline

functions over triangulations. Bivariate spline have been studied ex-

tensively in different contexts, see [2,10,16,17,19,20]. An advantage of

the use of bivariate splines is the ease to generate a smooth density

surface over a spatial domain. The differentiability can be useful for

some applications which involves the rate of changes of population

along different directions at any location inside the domain, as ex-

plained in the following section.

Our numerical solution of this PDE is slightly different from the

classic approach in a few ways. Instead of defining a weak solution

in terms of test functions defined on domain �T = � × (0, T ], we

define a discrete weak solution of the PDE using test functions de-

fined on � together with the first order divided difference in time. See

Definition 4.1. Another difference from the classic approach is that we

use an optimization approach to establish the existence, uniqueness,

stability and other properties of this discrete weak solution. We shall

use bivariate splines to approximate the discrete weak solution using

the discrete weak solution in the finite dimensional spline space. We

are able to show that spline discrete weak solution converges to the

discrete weak solution in H1(�) as the size of underlying triangula-

tion goes to zero.

It is clear that there are three nonlinearities in (1.2): the nonlinear

diffusive term D(p, x), the nonlinear growth function F(p) and non-

linearity condition 0 ≤ p(x, t) ≤ 1 for all x, t which is essential to the

theory presented. We have to design a convergent computational al-

gorithm to find bivariate spline solutions and establish how well our

bivariate spline solutions are close to the exact discrete weak solu-

tion. We implement our computational algorithm in MATLAB. With

the numerical solution, we are able to simulate how a population dis-

perses over the area � of interest. In particular, we are able to see how

the Allee constant σ plays a significant role in the population devel-

opment.

2. Biological motivation: vector-borne disease

The dispersal patterns of a species in a given environment de-

pends on the spatial scale considered, the temporal scale studied, the

physical size of the model organism, and the life history the species.

In most vector-borne disease dynamics, the dispersal of hosts and

vectors has to be considered independently. In the case of mosquito-

borne disease (e.g. malaria), human movement is a problem of a fun-

damentally different nature as compared to vector movement [4,28].

We focus in this paper on the dispersal of mosquitoes, which

can be characterized by the diffusion–reaction framework presented

in (1.2). Note that we propose Allee dynamics. The study of Allee

effect in insects is common in the context of biological invasions

[12,15]; however, the question of invasibility is not necessary to study

the density dependence of a dispersal process. There is evidence

that supports the assumption of Allee dynamics in this context; it

has been shown that human-dependent mosquito populations (e.g.

mosquito species that transmit malaria) can rapidly collapse when

the population is reduced below realistic non-zero thresholds [13].

Vector control is often the tool of choice to manage mosquito-

borne disease. When mosquitoes are removed from an area, or the

population is brought to a level that drives local extinction, it can

be repopulated by dispersal from neighboring areas. But landscapes

are not even; instead, there are transitions in the patterns of vege-

tation cover which determine diffusivity and the suitability of local

environments for the establishment and dispersal of mosquitoes. The

effect of this spatial heterogeneity on population dispersal can be ac-

counted for by (1.2), where D(p, x) allows individual consideration of

diffusivity in each segment of the spatial domain. The bivariate spline

solution results in a smooth density surface over the entire spatial do-

main, which is very convenient to determine gradients of dispersal in

all directions at all times.

Fig. 1 offers an example of the type of problem that could be

solved with the approach presented in this paper. It depicts a map

of vegetation cover for Colombia, in the Northwest corner of South

America. The region on the right side of the map shows the location

where resistance to the insecticide DDT was recorded for the first

time in Anopheles darlingi in 1990 [29]. There are two fundamental

questions in public health that could be addressed using the meth-

ods presented in this paper: (i) what is the likely pattern of dispersal

of advantageous genes conferring Anopheles mosquito’s resistance

to insecticides and/or repellents, and (ii) what is the likely dispersal

and re-population by mosquito of areas subject to vector control. In

order to answer these questions with actionable recommendations,

we would need to consider multiple scales, the interaction between

vectors and hosts, and epidemiological data for calibration of mod-

els. The scope of this paper is limited to the numerical solution of

(1.2) via bivariate splines to solve one piece of this puzzle: vector

dispersal.

We present in Section 7.2 numerical simulations using the geom-

etry of the City of Bandiagara, Mali, as a proof of concept. In this ex-

ample we did not consider a space-dependent diffusivity due to local

variations in the landscape. We plan to undertake the calibration of

this model with actual malaria data in a posterior study using the

same locality, since Bandiagara has been the subject of many model-

ing exercises [5,6].

3. Preliminaries

For the sake of completeness, we list a number of lemmas used in

this paper, which are special cases of well-known results.

Lemma 3.1. For a, b ≥ 0 and any α > 0 we have

ab ≤ α

2
a2 + 1

2α
b2

Lemma 3.2 (Ladyzhenskaya’s inequality). For any p ∈ H1
0
(�) for � ⊂

R
2 we have the following inequality.

‖p‖L4 ≤ C‖p‖1/2

L2 ‖∇p‖1/2

L2

Theorem 3.1 (Rellich–Kondrachov). Suppose that � is bounded with

Lipschitz boundary. Then we have the following compact injection:

H1(�) ⊂ L2(�)

That is, any bounded sequence in H1(�) has a subsequence which con-

verges to an L2(�) function in L2 norm.
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